Languages and decision problems

An alphabet is a finite set.
Eg. $\Sigma = \{0, 1\}$
A string over an alphabet Σ is a finite sequence from Σ.
$\Sigma^* = \text{the set of all strings (including the null string) over } \Sigma$.
A language over Σ is a set of strings over Σ.
Eg. $Prime = \{\alpha \in \Sigma^* \mid \alpha \text{ is the binary encoding of a prime number}\}$
A decision algorithm for a language L over Σ
is an algorithm which on input a string \(\alpha \in \Sigma^* \),
outputs "yes" if \(\alpha \in L \);
outputs "no" if \(\alpha \notin L \).
Assume standard binary encoding for natural numbers,
rational numbers, graphs, etc.
\(< >: \)"standard binary encoding"
\(Prime=\{<n>\mid n\text{ is a prime number}\}\) captures the
question of distinguishing primes from composites.
Turing machine -- formal model

Deterministic Turing machine (DTM)

\[M = (Q, \Sigma, \delta, q_0, q_f) \]

- \(Q \): a finite set of states
- \(q_0, q_f \in Q \)
- \(\delta \): transition function

\[\delta : Q - \{q_f\} \times \Sigma \rightarrow Q \times \Sigma \times \{L, R, S\} \]

Configuration: \(\alpha q \beta, \alpha, \beta \in \Sigma^*, q \in Q. \)
Transition
\[\delta(q, a) = (p, b, S) \Rightarrow \alpha qa\beta \xrightarrow{M} \alpha pb\beta \]
\[\delta(q, a) = (p, b, L) \Rightarrow \alpha qa\beta \xrightarrow{M} \alpha pc\beta \]
\[\delta(q, a) = (p, b, R) \Rightarrow \alpha qa\beta \xrightarrow{M} \alpha bp\beta \]

The language accepted by M
\[L(M) = \{ \alpha \in \Sigma^* \mid q_0\alpha \xrightarrow{*} \beta q_f \gamma, \beta, \gamma \in \Sigma^* \} \]

#steps := #transitions
\[C_0 \xrightarrow{M} C_1 \xrightarrow{M} \ldots \xrightarrow{M} C_n \]

The function computed by a Turing machine M
\[f_M(\alpha) = \beta \text{ if } q_0\alpha \xrightarrow{*} \beta q_1\beta_2 \text{ on } M \text{ where } \beta = \beta_1\beta_2. \]
M decides a language L iff
\[f_M(\alpha) = 1 \text{ for all } \alpha \in L, \text{ and } \]
\[f_M(\alpha) = 0 \text{ for all } \alpha \notin L. \]

M accepts L in polynomial time if
\[\exists c, \text{ #transition steps for } M \text{ to accept all } \]
\[\alpha \in L \text{ is } O(\mid \alpha \mid^c). \]
Turing machines for computing functions and deciding languages

The function computed by a Turing machine M

$$f_M(\alpha) = \beta \text{ if } q_0 \alpha \xrightarrow{*} \beta_1 q_f \beta_2 \text{ on } M \text{ where } \beta = \beta_1 \beta_2.$$

f_M is recursive if $f_M(\alpha)$ is defined for all inputs α.

M decides a language L iff

$$f_M(\alpha) = 1 \text{ for all } \alpha \in L, \text{ and}$$

$$f_M(\alpha) = 0 \text{ for all } \alpha \not\in L.$$
Nondeterministic Turing machine (NDTM)

\[M = (Q, \Sigma, \delta, q_0, q_f) \]

- \(Q \): a finite set of states
- \(q_0, q_f \in Q \)
- \(\delta \): transition function

\[\delta : Q \times \Sigma \rightarrow 2^{Q \times \Sigma \times \{L,R,S\}} \]

\[\delta(q, a) = \{(p_i, b_i, D_i) \mid i = 1, \ldots, l\} \text{ where } D_i = L, R, \text{ or } S \]

- or the empty set.

Eg. \(\delta(p,1) = \{(q,0,L), (r,1,S)\} \)

001p1 \(\xrightarrow{M}00q10\)

or, 001p1 \(\xrightarrow{M}001r1\)
(p, b, S) ∈ \delta(q, a) \Rightarrow \alpha qa\beta\rightarrow_{M}\alpha pb\beta

(p, b, L) ∈ \delta(q, a) \Rightarrow \alpha cqa\beta\rightarrow_{M}\alpha pcb\beta

(p, b, R) ∈ \delta(q, a) \Rightarrow \alpha qa\beta\rightarrow_{M}\alpha bp\beta

The language accepted by M
\[L(M) = \{ \alpha \in \Sigma^* \mid q_0 \alpha \rightarrow^* \beta q_f \gamma, \beta, \gamma \in \Sigma^* \} \]

#steps := #transitions

\[C_0 \rightarrow_{M} C_1 \rightarrow_{M} \ldots \rightarrow_{M} C_n \]

M accepts L in non-deterministic polynomial time if
\[\exists c, \text{ for all } \alpha \in L, \text{ there is a transition sequence of} \]
\[O(|\alpha|^c) \text{ steps for } M \text{ to accept } \alpha. \]
P vs NP

A language L is in P iff there is a DTM which accepts L in polynomial time.

A language L is in NP iff there is a NDTM which accepts L in polynomial time. Equivalently, L is in NP iff L has a deterministic polynomial time verifier; that is a polynomial time algorithm $V(x,y)$ such that

$$\exists c, \text{ for all } x, x \in L \text{ iff } \exists y, |y| \leq |x|^c, V(x, y) = 1.$$
NP models poly-time verification

Satisfiability: Given a Boolean formula $\varphi(x_1,\ldots,x_n)$, to decide if φ is satisfiable.

NP Algorithm:
Guess a truth assignment $t : \{x_1,\ldots,x\} \rightarrow \{0,1\}$
If $\varphi(t(x_1),\ldots,t(x_n)) = 1$, output "yes".

Corresponding poly-time verification algorithm
Input: $\varphi(x_1,\ldots,x_n)$, $\tau \in \{0,1\}^n$
If $\varphi(\tau(1),\ldots,\tau(n)) = 1$ output "yes"

Remark: yes $\Rightarrow \tau$ is a certificate for the satisfiability of φ
Example
Clique: Given a graph $G = (V, E)$ and an integer k,
to decide if G has a k-clique. Assume $V = \{1, \ldots, n\}$

NP Algorithm:
Guess k vertices ($t : \{1, \ldots, n\} \rightarrow \{0,1\}$)
If these k vertices form a clique, output "yes"

Corresponding poly-time verifier
Input: $G = (V, E), k, \tau \in \{0,1\}^k$, where $V = \{1, \ldots, n\}$

If $\{i \mid \tau(i) = 1\}$ forms a clique, output "yes".
Remark: yes $\Rightarrow \tau$ is a certificate for G.
A language \(L \) is in NP iff \(L \) has a polynomial time verifier.

Poly-time verifier \(\Rightarrow \) in NP.

Suppose \(L \) has a poly-time verifier:

\(\forall x, y \) such that \(x \in L \) iff \(\exists y, |y| \leq |x|^c, V(x, y) = 1. \)

Corresponding NP-algorithm for \(L \):

On input \(x \)

Guess a string \(y \) of length \(\leq |x|^c \).

Call \(V(x, y) \).
Polynomial time transformation (reduction)

Let L_1 and L_2 be two languages over Σ_i, $i = 1,2$, resp. Suppose there is a poly-time algorithm T such that on input $x \in \Sigma_1^*$, Algorithm T outputs a $y \in \Sigma_2^*$ such that

$$x \in L_1 \iff y \in L_2.$$

(T is therefore a polynomial time computable function from Σ_1^* to Σ_2^*.)

Then we say that L_1 is polynomial time reducible to L_2. Write $L_1 \leq_p L_2$.

Satisfiability problem

A literal is either a Boolean variable or the negation of a variable. A clause is the disjunction (\lor) of literals. A Boolean formula in conjunctive normal form (CNF) is the conjunction (\land) of clauses. It is a k-CNF if each clause has k literals.

Eg. \((x_1 \lor \neg x_1 \lor \neg x_2) \land (x_3 \lor x_2 \lor x_4) \land (\neg x_1 \lor \neg x_3 \lor \neg x_4)\)

3-CNF: Given a Boolean formula in 3-CNF, to decide if it is satisfiable.
Reduction from search to decision

Suppose there exists a polynomial-time algorithm D for CNF:

$$D(\varphi(x_1, \ldots, x_n)) = 1 \iff \varphi \in \text{CNF}.$$

Algorithm S finds a satisfying assignment for $\varphi \in \text{CNF}$

- if $D(\varphi(1, x_2, \ldots, x_n)) = 1$, set $x_1 = 1$ and call $S(\varphi(1, x_2, \ldots, x_n))$ recursively; otherwise
- set $x_1 = 0$ and call $S(\varphi(0, x_2, \ldots, x_n))$ recursively.

Time: $O(nT_D(||\varphi||))$
NP-completeness

A language L is NP-complete if

• L is in NP.

• For all $L' \in \text{NP}$, $L' \leq_p L$.
Proof that 3-CNF is NP-complete.

• A generic reduction from any NP problem to 3-CNF: Given any \(L \in \text{NP} \), \(L \leq_p \text{CNF} \).

• CNF is capable of expressing any NP computation.
Suppose \(L \in \text{NP}, \) accepted by some NDTM \(M \) in \(\text{p(n)} \) time.

Demonstrate a poly-time algorithm \(T \) which
- on input a string \(w \), constructs a CNF \(\phi_w \) so that
- \(w \in L \iff \phi_w \) is satisfiable (hence \(\in \) CNF).

\[|\phi_w| \text{ is polynomial in } |w|. \]

Consequently, if \(\text{CNF} \in \text{P} \), then \(L \in \text{P} : \)
- Suppose a \(\text{p-time} \) algorithm \(A \) solves the CNF problem
 - in \(O(|\phi|^c) \) time.
 - \[|\phi_w| = O(|w|^d). \]

To decide if \(w \in L \),
- \(T(w) \) outputs \(\phi_w \).
 - \(A(\phi_w) \). - - - time \(O(|\phi_w|^c) = O(|w|^{cd}) \).
Polynomial time transformation

L accepted by a NDTM M in $p(n)$ time.

$M = (Q, \Sigma, q_0, q_f, \delta)$

$Q : q_0, ..., q_f$

$\Sigma = X_1, ..., X_m$

Variables of ϕ_w and intended meaning:

[cells] $C(i, j, t) \iff$ at time t, cell i contains X_j

[state] $S(i, t) \iff$ at time t, M is in state q_i

[head] $H(i, t) \iff$ at time t, head of M reading cell i

$n = |w|, 1 \leq i \leq p(n), 0 \leq t \leq p(n), 1 \leq j \leq m.$
A useful Boolean expression
\[U(x_1, \ldots, x_r) := (x_1 \lor \ldots \lor x_r) \land (\neg x_i \lor \neg x_j) \land \cdots \land \neg x_n - 1 \iff \text{exactly one of the var is 1}. \]

Expressing Head position:
\[A_t = U(H(1,t), \ldots, H(p(n), t)) \]
[At time t, head is reading exactly one cell]
\[A = \land A_t, 0 \leq t \leq p(n) \]
Cell contents
\[B_{i,t} = U(C(i,1,t), \ldots, C(i,m,t)) \]
[At time t, cell i contains exactly one symbol]
\[B = \land B_{i,t} \]
States:
\[C = \land U(S(0,t), \ldots, S(f,t)) \]
[At time t, M is in exactly one state]
Expressing transitions

\[E_{i,j,k,t} : \text{if at time } t, \text{ cell } i \text{ contains } X_j, \text{ then one rule} \]

in \(\delta(q_k, X_j) \) is applied.

\[E_{i,j,k,t} = \neg C(i, j, t) \lor \neg H(i, t) \lor \neg S(k, t) \lor \Delta(i, j, k, t) \]

\[\Delta(i, j, k, t) = \lor_{z} \tau(i, j, k, t, z) \]

Say \(\delta(q_k, X_j) = \{(q_1, X_1, R), ..., (q_m, X_m, D_m)\} \)

\[\tau(i, j, k, t, l) = C(i, l, t + 1)S(1, t + 1)H(i + 1, t + 1) : \]

at time \(t + 1 \), cell \(i \) contains \(X_1 \), \(M \) is in state \(q_1 \), and head is reading cell \(i + 1 \).
\[F = S(f, p(n)) \text{[in accepting state by time } p(n)\text{]} \]
\[G = S(0,0)H(1,0) \land \left(\bigwedge_{i=1}^{p(n)} C(i, w_i, 0) \right), \]
\[w = w_1, \ldots, w_n, b, \ldots, b \quad \text{[Initial configuration]} \]
\[\phi_w = A \land B \land C \land E \land F \land G \]

If \(w \in L \), assign the variables according to an accepting transition sequence \(\leq p(n) \) steps. \(\Rightarrow \phi_w \) is satisfied.

If \(\phi_w \) is satisfiable, a satisfying assignment on the var. translates directly into an accepting seq. of transition of length \(\leq p(n) \).
More NP-complete problems

Thm Suppose $L_1 \leq_{p} L_2$. Then $L_2 \in P \implies L_1 \in P$.

Thm. Suppose $L \in NP$ and $L \leq_{p} L'$.
If L' is NP-complete, then L is also NP-complete.

Lemma 3 - CNF \leq_{p} Clique
Lemma Clique \leq_{p} Vertex Cover
Cor. Clique is NP-complete.
Cor. Vertex-Cover is NP-complete.
More NP-complete problems

Independent - set

\[G = (V, E) \]

\(I \subseteq V \) is independent if for all \(u, v \in I \), \((u, v) \notin E \).

IS: Given a graph \(G = (V, E) \) and an integer \(k \), to decide if \(G \) has an independent set of \(k \) vertices.

Hamiltonian cycle: Given a graph \(G = (V, E) \) to decide if there is a simple cycle on \(G \) that contains every vertex.

Traveling salesman problem: Given a graph \(G = (V, E) \) with weight \(w : E \to \mathbb{Z}_{\geq 0} \) and an integer \(k \), to decide if \(G \) has a Hamiltonian cycle of weight no greater than \(k \).
Integer linear programming: Given an integer matrix

\[A = (a_{ij})_{m \times n} \] and vector \(b \),
to decide if there is an integer solution to
\[Ax = b, \quad x \geq 0. \]

(0,1) – ILP: Given an integer matrix

\[A = (a_{ij})_{m \times n} \] and vector \(b \),
to decide if there is an integer solution to
\[Ax = b, \quad x \in \{0,1\}. \]