Please do not open this exam until you are told to do so.

GOOD LUCK!!

<table>
<thead>
<tr>
<th>Question #</th>
<th>Maximum Points</th>
<th>Score</th>
<th>Grader</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-10</td>
<td>40</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11-21</td>
<td>40</td>
<td></td>
<td></td>
</tr>
<tr>
<td>21-30</td>
<td>40</td>
<td></td>
<td></td>
</tr>
<tr>
<td>31-40</td>
<td>40</td>
<td></td>
<td></td>
</tr>
<tr>
<td>41-50</td>
<td>40</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TOTAL</td>
<td>200</td>
<td>200</td>
<td></td>
</tr>
</tbody>
</table>

+ [Signature]

208
CIRCLE THE MOST NEARLY CORRECT ANSWER FOR EACH QUESTION (4 PTS).

1. A body fluid has a [H⁺] (conc.of H⁺) = 10⁻⁸ M. Its pH is:
 - 6
 - 7
 - 8
 - 10
 - 8

2. A cell membrane typically
 - is a barrier to all non-polar molecules
 - has a polar hydrophilic interior
 - has a hydrophilic surface
 - always freely passes ions like Na⁺ or Cl⁻
 - has a hydrophilic surface

3. CH₂CH₂OH is:
 - ethanol, active ingredient of booze
 - methanol, a toxic alcohol
 - methane (natural gas)
 - isopropanol (rubbing alcohol)
 - ethanol, active ingredient of booze

4. The drawback of the original penicillin is:
 - very narrow antibacterial spectrum.
 - no part of it can be modified without loss of drug activity.
 - none of the above
 - highly toxic.
 - none of the above

5. Comparing viruses, bacteria:
 - bacteria are usually larger and more complex
 - antibiotics are effective against both
 - only bacteria cause epidemics
 - Viruses have thicker cell walls
 - bacteria are usually larger and more complex
6. HIV is termed a "retrovirus" because:
 - it incorporates the host's DNA into its RNA
 - its genetic RNA is transcribed "backwards" to DNA
 - it was discovered using retro-grade analysis
 - it "retro-fits" into the enzyme active site

7. Oxygen has atomic weight 16.00. The molecular weight of \(\ce{O_2} \) is:
 - 16 grams
 - 16 moles/gram
 - 32 grams/mole
 - 32 moles/gram

8. The key role of HIV in destroying the immune system seems to be:
 - HIV attacks \(T_{\text{killer}} \) cells, impairing both \(T_{\text{killer}} \) cell and B cell (antibody) production.
 - HIV attacks \(T_{\text{helper}} \) cells, impairing both \(T_{\text{killer}} \) cell and B cell (antibody) production.
 - HIV kills red blood cells.
 - HIV attacks B cells (antibody production).

9. AIDS-linked diseases (opportunistic infections) include:
 - herpes simplex
 - pneumocystis (pneumonia)
 - shingles
 - all of the above

10. A patent is:
 - a right to use an invention.
 - a license to use an invention
 - a monopoly on use of an invention.
 - all of the above.
11. I find a new method for making someone else's patented drug. I can obtain:
 - a composition of matter patent.
 - a process patent.
 - a use patent.
 - none of the above.

12. An example of a basic compound is:

 - R-NH₂
 - R-NH₃⁺
 - R-CO₂H
 - HCl

13. The first step in HIV infection of a cell:

 - HIV RT copies viral RNA to DNA
 - HIV integrase inserts viral DNA into host cell DNA
 - HIV protease slices viral polyprotein into functional enzyme fragments
 - HIV gp120 surface protein recognizes host CD-4 membrane protein

14. The molecule shown is:

 - thymidine, a nucleoside
 - serine, an amino acid
 - adenine, a DNA purine
 - sequanavir, a protease inhibitor
15. For the DNA sequence 5'—A—G—C—T—3', the complementary sequence
5'—X—Y—Z—W—3' is:

- 5'—T—C—G—A'—3'
- 5'—A—G—C—T—3'
- 5'—A—G—G—C—3'
- 5'—A—G—C—U—3'

16. HIV replicates:
 - by expressing its genes in the host cell genome, using the cell’s biochemical machinery
 - by expressing its genes separately from the host cell genome, using the cell’s biochemical machinery
 - by expressing its genes independently of the host cell genome, using viral biochemical machinery
 - outside the host cell

17. After infection with HIV, without treatment the time for progression to disease symptoms is usually about:
 - 7-10 years
 - 1-2 years
 - more than 20 years
 - a few months

18. Proteins consist of:
 - nucleosides linked by phosphate bonds
 - 50 or more amino acids linked by peptide bonds
 - fewer than 5 amino acids linked by peptide bonds
 - nucleic acids linked by amide bonds
19. An enzyme protein in an aqueous environment (e.g., blood):
- stretches out into a linear structure
- folds to move its hydrophobic R groups into its interior, while placing its ionic and polar groups on or near its surface
- folds to move its ionic and polar groups into its interior, while placing its hydrophobic R groups on or near its surface
- shows no preference in placing its R, ionic and polar groups

20. A small amount of a drug is added to an enzyme, and we analyze the effect using kinetics (Lineweaver-Burk plot). \(V_{\text{max}} \) increases, \(K_m \) is unchanged. This suggests that the drug inhibits the enzyme:
- reversibly and non-competitively, or irreversibly and non-competitively
- not at all
- irreversibly but not non-competitively
- reversibly and competitively

21. Once symptoms appear and an AIDS diagnosis is made, the average life left to an untreated patient is about:
- a few months
- 7-10 years
- more than 20 years
- 1-2 years

22. For acetic acid shown below, draw in all covalent bonds (use single lines) and unshared electrons (use double dots). Be sure your structure obeys the octet rule!
23. A drug taken orally, to be effective, should:
 - resist stomach acid
 - be readily absorbed by the gastrointestinal tract
 - be only slowly broken down in the liver
 - All of the above are true

24. In order to design a more effective drug, we might consider changing the parent drug structure's
 - size
 - shape
 - polarity
 - All of the above

25. For very large ranges of "P" vs. "C" data in pharmacodynamics studies of a certain drug, we obtain the equation the log (1/C) = 2.1 log P - 0.2 log (P²) + 0.5. The equation predicts that a plot of log(1/C) vs. log P will:
 - be linear, positive slope
 - be linear, negative slope
 - be a bell-shaped curve, with both + and − slopes
 - be a hyperbola

26. A fly-by-night company makes a new AIDS drug sloppily, specifying that the average amount (x) of drug/pill is 39.0 mg with a standard deviation (x) = ±10 mg. It is known that double the normal dose causes fatal side effects. If 1,000,000 patients take this drug once, how many are likely to be killed? (see "Z table", next page) [Recall: Z = (x−μ)/σ] Z : \(\frac{39 \times Z - 39}{10} \) from table
 - none
 - about 1
 - about 50
 - about 2,400

27. A drug company gets IND approval for its hot new drug from the FDA
 - ready to start Phase I clinical trials
 - ready to start toxicology studies in an animal model
 - ready to sell the drug on the market
 - ready to start Phase III clinical trials
28. Key difference in going from Phase I - Phase II clinical trials of an AIDS drug is:

- Phase I, larger patient base
- Phase II, looking for toxicity
- Phase II, looking for efficacy
- Phase I in usually a single-blind study

Table 11.1 Area under the Standard Normal Curve

<table>
<thead>
<tr>
<th>z</th>
<th>.00</th>
<th>.01</th>
<th>.02</th>
<th>.03</th>
<th>.04</th>
<th>.05</th>
<th>.06</th>
<th>.07</th>
<th>.08</th>
<th>.09</th>
</tr>
</thead>
<tbody>
<tr>
<td>.0</td>
<td>.5000</td>
<td>.4997</td>
<td>.4992</td>
<td>.4986</td>
<td>.4979</td>
<td>.4971</td>
<td>.4963</td>
<td>.4955</td>
<td>.4945</td>
<td>.4935</td>
</tr>
<tr>
<td>.1</td>
<td>.4900</td>
<td>.4888</td>
<td>.4874</td>
<td>.4859</td>
<td>.4844</td>
<td>.4828</td>
<td>.4812</td>
<td>.4795</td>
<td>.4777</td>
<td>.4758</td>
</tr>
<tr>
<td>.2</td>
<td>.4738</td>
<td>.4717</td>
<td>.4695</td>
<td>.4672</td>
<td>.4648</td>
<td>.4623</td>
<td>.4597</td>
<td>.4571</td>
<td>.4544</td>
<td>.4516</td>
</tr>
<tr>
<td>.3</td>
<td>.4488</td>
<td>.4458</td>
<td>.4427</td>
<td>.4394</td>
<td>.4360</td>
<td>.4324</td>
<td>.4287</td>
<td>.4249</td>
<td>.4210</td>
<td>.4169</td>
</tr>
<tr>
<td>.4</td>
<td>.4117</td>
<td>.4064</td>
<td>.4010</td>
<td>.3955</td>
<td>.3900</td>
<td>.3844</td>
<td>.3787</td>
<td>.3729</td>
<td>.3669</td>
<td>.3608</td>
</tr>
<tr>
<td>.5</td>
<td>.3545</td>
<td>.3481</td>
<td>.3416</td>
<td>.3349</td>
<td>.3280</td>
<td>.3209</td>
<td>.3137</td>
<td>.3063</td>
<td>.2987</td>
<td>.2909</td>
</tr>
<tr>
<td>.6</td>
<td>.2829</td>
<td>.2747</td>
<td>.2654</td>
<td>.2559</td>
<td>.2454</td>
<td>.2347</td>
<td>.2239</td>
<td>.2129</td>
<td>.2018</td>
<td>.1905</td>
</tr>
<tr>
<td>.7</td>
<td>.1789</td>
<td>.1663</td>
<td>.1525</td>
<td>.1376</td>
<td>.1225</td>
<td>.1069</td>
<td>.0913</td>
<td>.0748</td>
<td>.0579</td>
<td>.0408</td>
</tr>
<tr>
<td>.8</td>
<td>.0234</td>
<td>.0057</td>
<td>.0002</td>
<td>.0000</td>
<td>.0000</td>
<td>.0000</td>
<td>.0000</td>
<td>.0000</td>
<td>.0000</td>
<td>.0000</td>
</tr>
<tr>
<td>.9</td>
<td>.0000</td>
</tr>
</tbody>
</table>

Diagram of Area under the Standard Normal Curve.
29. In two clinical trials A and B, A uses 50 patients, B uses 5 patients. We are looking for the statistical significance of a certain toxic side effect that appears in a few patients in both trials. If we use the data from B instead of A, we: (Hint: see table on next page.)
 - increase the value of “t”, the test statistic for a given “level of significance” of a result
 - decrease the value of “t”, the test statistic for a given “level of significance” of a result
 - don’t change the value of “t”, the test statistic for a given “level of significance” of a result
 - increase the degrees of freedom associated with our result

30. AIDS as a disease in the USA was first recognized in the:
 - early 50’s
 - early 60’s
 - early 70’s
 - [early 80’s]

31. HIV stands for:
 - [human immunodeficiency virus]
 - health impairing virus
 - highly immunogenic virus
 - none of the above

32. The most efficient path for HIV transmission:
 - blood transfusions (infected blood).
 - heterosexual intercourse (infected partner)
 - air mist (coughing or sneezing)
 - kissing (mouth to mouth).

33. A recommended procedure for HIV-testing to avoid false positives is:
 - initial Western Blot.
 - initial ELISA.
 - [ELISA; repeat; then if still positive, Western Blot.
 - Western Blot; repeat; then if still positive, ELISA.

34. The ELISA test for HIV involves three steps:
A. patient’s anti-HIV p24 antibody (blood sample) binds to immobilized HIV p24
B. An enzyme linked to an antigen specific for human antibody is added.
C. A colorless compound converted by this enzyme into a yellow product is added.

The correct order of steps is:
Table 11.5 Percentage points for the \(t \) distribution

![Diagram of the t distribution with area shaded on one side.]

<table>
<thead>
<tr>
<th>Degrees of freedom, (\nu)</th>
<th>Area to the right</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0.05</td>
</tr>
<tr>
<td>1</td>
<td>6.314</td>
</tr>
<tr>
<td>2</td>
<td>2.920</td>
</tr>
<tr>
<td>3</td>
<td>2.353</td>
</tr>
<tr>
<td>4</td>
<td>2.132</td>
</tr>
<tr>
<td>5</td>
<td>2.015</td>
</tr>
<tr>
<td>6</td>
<td>1.943</td>
</tr>
<tr>
<td>7</td>
<td>1.896</td>
</tr>
<tr>
<td>8</td>
<td>1.860</td>
</tr>
<tr>
<td>9</td>
<td>1.833</td>
</tr>
<tr>
<td>10</td>
<td>1.812</td>
</tr>
<tr>
<td>11</td>
<td>1.796</td>
</tr>
<tr>
<td>12</td>
<td>1.782</td>
</tr>
<tr>
<td>13</td>
<td>1.771</td>
</tr>
<tr>
<td>14</td>
<td>1.761</td>
</tr>
<tr>
<td>15</td>
<td>1.753</td>
</tr>
<tr>
<td>16</td>
<td>1.746</td>
</tr>
<tr>
<td>17</td>
<td>1.740</td>
</tr>
<tr>
<td>18</td>
<td>1.734</td>
</tr>
<tr>
<td>19</td>
<td>1.729</td>
</tr>
<tr>
<td>20</td>
<td>1.725</td>
</tr>
<tr>
<td>21</td>
<td>1.721</td>
</tr>
<tr>
<td>22</td>
<td>1.717</td>
</tr>
<tr>
<td>23</td>
<td>1.714</td>
</tr>
<tr>
<td>24</td>
<td>1.711</td>
</tr>
<tr>
<td>25</td>
<td>1.708</td>
</tr>
<tr>
<td>26</td>
<td>1.706</td>
</tr>
<tr>
<td>27</td>
<td>1.703</td>
</tr>
<tr>
<td>28</td>
<td>1.701</td>
</tr>
<tr>
<td>29</td>
<td>1.699</td>
</tr>
<tr>
<td>30</td>
<td>1.697</td>
</tr>
<tr>
<td>40</td>
<td>1.684</td>
</tr>
<tr>
<td>60</td>
<td>1.671</td>
</tr>
</tbody>
</table>

For larger values of \(\nu \) treat \(t \) as a \(z \) score and use the standard normal table.
35. Total cost of bringing a new AIDS drug to market, including development is about:

- $2.5 M
- $25,000
- $250 M
- $250,000

36. Key criterion/criteria for a patentable invention:

- novel
- useful
- novel and useful
- single inventor

37. The key problem in distributing modern drugs to AIDS patients in many “third world” countries is:

- lack of local drug manufacturing facilities
- shortage of physicians to write prescriptions
- lack of drug patent protection in those countries
- cost of licensing patented drugs

38. After exposure to HIV, taking AZT immediately on a daily basis for several months:

- will delay AIDS for 5 - 10 years
- will prevent getting AIDS
- may provide protection against getting AIDS in a few cases
- has no benefit in preventing AIDS

39. What is a “mole”?

- subterranean burrowing animal
- individual within an intelligence agency who secretly works for a foreign agency
- an Avogadro number (6.02 x 10^23) of molecules
- twice the number of molecules in 12.0 g of carbon

40. The drug action of AZT is due to:

- inactivating RT, the enzyme needed for viral DNA replication
- its stopping viral DNA replication by preventing further addition of bases to new DNA strands.
- incorporation of viral DNA into host cell DNA.
- its blocking competitively inhibiting HIV protease
41. The active form of AZT is:
 - AZT monophosphate
 - AZT diphosphate
 - **AZT triphosphate**
 - as taken in the pill (nucleoside).

42. An unexpected (Khalsa) side effect of protease inhibitors is:
 - large fat deposits and high cholesterol.
 - baldness.
 - mental disorders
 - gum disease

43. The best current anti-HIV (AIDS) drug strategy (“HAART”):
 - one drug from each drug class (at least two)
 - two drugs from the same drug class.
 - three drugs from the same drug class.
 - **one drug from each drug class (at least three).**

44. “Gene therapy” of AIDS could involve:
 - repairing “sick” genes
 - is a current basis of AIDS treatment
 - is about to emerge as a key new therapy
 - currently is only a conceptual therapy that may be years in the future

45. One statement is not true:
 - CH₃C(=O)CH₃ is a ketone
 - CH₃NH₂ is an amine
 - Glu–Lys–Gly defines the primary structure of a small peptide
 - in a reaction A + B → C + energy, where k = rate constant and energy = ΔH, an added catalyst will decrease k and increase ΔH

46. The AIDS drug structure shown is a
 - protease inhibitor
 - **nucleoside RT inhibitor**
 - non-nucleoside RT inhibitor
 - all of the above
47. Abacavir is also called Ziagen. Why the dual names for this AIDS drug?
 - one is a company trademark, the other is generic
 - drug companies use multiple names to confuse the consumer
 - companies and FDA couldn’t agree on names.
 - one is for patients, the other for doctors.

48. HIV “viral load”:
 - measures capacity of virus to withstand mutations
 - measures anti-HIV antibody in the blood
 - measures amount of virus RNA in the blood
 - measures a drug’s breadth of action against different viruses

49. A drug that decreases “viral load” by “3 logs” has decreased the amount of virus by:
 - 3
 - 10
 - 300
 - 1000

50. The main problem facing drug therapy for HIV infection in the USA is:
 - drug resistance caused by rapid mutation of the virus
 - less than 2 lead compounds have entered clinical trials in the past two years
 - there are no rational targets for viral drug design
 - there are only 2 classes of AIDS drugs currently available
BONUS QUESTIONS (@4 pts):

B1. If an HIV test gives 1/25 false positives and the known rate of HIV infection among UCLA students is 1/100, what are the odds that a UCLA student who tests positive ONCE is really HIV positive? Explain.

\[
\text{100 students} \rightarrow 1 \text{ real positive} + 4 \text{ false positives} \left(\frac{1}{25} \times 100 \right) \\
5 \text{ odds are } 1 : 5
\]

B2. Give two examples of ethical problems unique to the phenomenon of AIDS, & discuss BRIEFLY.

(any discussed in lecture or in Shire's text ok)