What Variance Risk Premium Tells Us About the Expected Market Returns

Sungjune Pyun

University of Southern California

The 28th Australasian Finance & Banking Conference

Dec. 16th, 2015
A Predictive Regression

\[R_{m,t+1} = \beta_0 + \beta_p \text{Predictor}_t + \epsilon_{t+1} \]

- To predict a variable at time \(T \) (Traditional Approach)
 1) Run above regression for \(t = T - k \) to \(t = T - 1 \) and obtain \(\hat{\beta}_{0,T} \) and \(\hat{\beta}_{p,T} \)
 2) Form out-of-sample predictions
 \[R_{m,T+1|T} = \hat{\beta}_{0,T} + \hat{\beta}_{p,T} \text{Predictor}_T \]

- Choosing \(k \) can be a problem when
 - \(R^2 \) is low \(\rightarrow \) requires high \(k \)
 - Predictive relation changes over time \(\rightarrow \) requires low \(k \)
Predictors of Market Returns

- Well known predictors (e.g. Dividend yield, Term Premium, Default Premium etc.)
 - Restricted to long term returns (requires long data)
 - In-sample R^2 low, out-of-sample R^2 lower, even negative

- The variance risk premium (VRP) predicts short-run returns (Bollerslev, Tauchen and Zhou 2009)
 - Low R^2
 - Question: Does the predictive relation change over time?
 - Time-varying risk aversion (Todorov, 2009), uncertainty (Drechsler and Yaron, 2011), negative jump risk (Bollerslev, Todorov and Xu 2015)
 - Neglected in the literature: price and variance move in the opposite direction.
Suppose:

\[R_{m,t+1} = \alpha_c + \beta_c (RV_{t+1} - E[RV_{t+1}]) + \epsilon_{t+1} \]

Take \(E^Q[\cdot] - E[\cdot] \) from the above equation. Then, approximately,

\[
\underbrace{R_f - E[R_{m,t+1}]}_{-\text{MRP}} = \underbrace{\beta_c [E^Q[RV_{t+1}] - E[RV_{t+1}]]}_{\text{VRP}} + E^Q[\epsilon_{t+1}]
\]

H1. The predictive relation between the VRP and the market returns is determined by \(\beta_c \)

H2. The predictive power depends on \(Corr(R_{m,t+1}, RV_{t+1} - E[RV_{t+1}]) \)
Forecasting Monthly Returns

▷ Traditional Approach
 1) First stage: \[R_{m,t+1} = \beta_0 + \beta_p VRP_t + \epsilon_{t+1} \]
 • From month \(t = T-k \) to \(t = T-1 \)
 2) OOS Prediction = \[\hat{\beta}_0 + \hat{\beta}_p VRP_T \]

▷ Contemporaneous Beta Approach
 1) First stage: \[R_{m,t} = \alpha_c - \beta_c (RV_t - E[RV_t]) + \epsilon_t \]
 • High-frequency data \(\rightarrow \) daily \(RV / \) returns during month \(T \)
 2) OOS Prediction = \[R_f + \hat{\beta}_c VRP_T \]

→ Uses only short-term data and has higher \(R^2 \)
The Model

Assumption:

\[
\frac{dS_t}{S_t} = \mu_t dt + \sqrt{V_t} (\rho_t dW^v_t + \sqrt{1 - \rho_t^2} \sqrt{V_t} dW^o_t)
\]

\[
dV_t = \theta(V_t) dt + \sigma_{vt} dW^v_t
\]

This implies the following two-factor structure:

\[
\frac{dS_t}{S_t} = \left[\mu_t + \rho_t \frac{\sqrt{V_t}}{\sigma_{vt}} (dV_t - \kappa(\theta - V_t)) \right] dt + \sqrt{1 - \rho_t^2} \sqrt{V_t} dW_t^o
\] (1)

Taking the variance process under the EMM and subtracting the variance process under the P measure gives,

\[
VRP = \sigma_{vt} \lambda^v_t
\]

The drift of Equation (1) under the EMM is the risk-free rate. Solving these equations together,

\[
\mu_t - r = -\rho_t \frac{\sqrt{V_t}}{\sigma_v} VRP_t + \sqrt{1 - \rho_t^2} \sqrt{V_t} \lambda^o_t
\]
Estimation Methodologies

- **VRP**
 - VRP\(_N\) = \(\frac{VIX^2}{12}\) - Realized Variance
 - VRP\(_I\) = \(\frac{VIX^2}{12}\) - E[Integrated Variance]

- **Contemporaneous Betas**: Daily regressions one for each month
 \[
 R_{m,t} = \alpha_c - \beta_c (RV_t - E[RV_t]) + \epsilon_t
 \]

- **Contemporaneous Correlations**: monthly corr between daily values
 \[
 Corr(R_{m,t+1}, RV_{t+1} - E_t[RV_{t+1}])
 \]
Estimation Methodologies

- **VRP**
 - $\text{VRP}_N = \text{VIX}^2/12$ - Realized Variance
 - $\text{VRP}_I = \text{VIX}^2/12$ - $E[\text{Integrated Variance}]$

- **Contemporaneous Betas**: Daily regressions one for each month
 \[R_{m,t} = \alpha_c - \beta_c (RV_t - E[RV_t]) + \epsilon_t \]

- **Contemporaneous Correlations**: monthly corr between daily values
 \[\text{Corr}(R_{m,t+1}, RV_{t+1} - E_t[RV_{t+1}]) \]

- **Main Volatility Model**: HAR-RVAR (Corsi 2009)
 (also Vol version and RGARCH)
 \[\sum_{j=1}^{k} RV_{\tau+j} = a_0 + a_d RV_{\tau} + a_w (\sum_{j=0}^{4} RV_{\tau-j}) + a_m (\sum_{j=0}^{21} RV_{\tau-j}) + \phi \tau + 1 \]
In-Sample Regressions (1) - Betas

Test the relation between the predictive and the contemporaneous betas

\[R_{m,t+1} = \gamma_0 + \gamma_v V R P_t + \gamma_I \beta_{c,t} \times V R P_t + \epsilon_{t+1} \]

<table>
<thead>
<tr>
<th>Dep Var</th>
<th>One-month Predictive Market Returns</th>
</tr>
</thead>
<tbody>
<tr>
<td>(V R P_N)</td>
<td>0.045 0.047</td>
</tr>
<tr>
<td></td>
<td>(1.82) (1.89)</td>
</tr>
<tr>
<td>(V R P_I)</td>
<td>0.044 0.044</td>
</tr>
<tr>
<td></td>
<td>(3.20) (2.89)</td>
</tr>
<tr>
<td>(\text{VRP} \times \beta_c)</td>
<td>-0.679 -0.719</td>
</tr>
<tr>
<td></td>
<td>(-2.13) (-2.12)</td>
</tr>
<tr>
<td>Adj-(R^2)</td>
<td>0.035 0.048 0.066 0.084</td>
</tr>
</tbody>
</table>
In-Sample Regressions (2) - Correlations

<table>
<thead>
<tr>
<th></th>
<th>Months with Corr that are</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>High</td>
<td>Medium</td>
<td>Low</td>
<td></td>
</tr>
<tr>
<td>VRP<sub>N</sub></td>
<td>In-sample R^2</td>
<td>0.185</td>
<td>0.151</td>
<td>0.004</td>
</tr>
<tr>
<td></td>
<td>Predictive beta (β_p)</td>
<td>0.139</td>
<td>0.087</td>
<td>-0.013</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(3.88)</td>
<td>(5.24)</td>
<td>(-0.36)</td>
</tr>
<tr>
<td>VRP<sub>I</sub></td>
<td>In-sample R^2</td>
<td>0.211</td>
<td>0.106</td>
<td>0.000</td>
</tr>
<tr>
<td></td>
<td>Predictive beta (β_p)</td>
<td>0.132</td>
<td>0.041</td>
<td>-0.002</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(3.92)</td>
<td>(5.01)</td>
<td>(-0.04)</td>
</tr>
<tr>
<td></td>
<td>Number of months</td>
<td>87</td>
<td>76</td>
<td>65</td>
</tr>
</tbody>
</table>

Predictions are more accurate when the correlations are higher.
Out-of-Sample Predictions (1) - Betas

\[OOS - R^2 = 1 - \frac{\sum_t (\hat{R}_{m,t+1|t} - R_{m,t+1})^2}{\sum_t (R_{m,t} - R_{m,t+1})^2} \]

<table>
<thead>
<tr>
<th></th>
<th>Predictive Beta</th>
<th>Contep. Beta</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>5y rolling</td>
<td>10y rolling</td>
</tr>
<tr>
<td>VRP_N</td>
<td>OOS-R^2</td>
<td>-0.057</td>
</tr>
<tr>
<td></td>
<td>Wald Stat</td>
<td>0.608</td>
</tr>
<tr>
<td></td>
<td>P-value</td>
<td>(0.436)</td>
</tr>
<tr>
<td>VRP_I</td>
<td>OOS-R^2</td>
<td>-0.169</td>
</tr>
<tr>
<td></td>
<td>Wald Stat</td>
<td>0.697</td>
</tr>
<tr>
<td></td>
<td>P-value</td>
<td>(0.404)</td>
</tr>
</tbody>
</table>
Out-of-Sample Predictions (2) - Correlations

<table>
<thead>
<tr>
<th>VRP</th>
<th>Betas</th>
<th>Months with Corr that are</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>High</td>
<td>Medium</td>
<td>Low</td>
<td>High-Low</td>
</tr>
<tr>
<td>VRP_N</td>
<td>5y Predictive</td>
<td>0.004</td>
<td>-0.037</td>
<td>-0.110</td>
<td>0.114</td>
<td></td>
</tr>
<tr>
<td></td>
<td>10y Predictive</td>
<td>0.138</td>
<td>0.106</td>
<td>-0.172</td>
<td>0.309</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Extended Sample</td>
<td>0.116</td>
<td>0.104</td>
<td>-0.148</td>
<td>0.264</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Contemp. Beta</td>
<td>0.129</td>
<td>0.021</td>
<td>0.072</td>
<td>0.057</td>
<td></td>
</tr>
<tr>
<td>VRP_I</td>
<td>5y Predictive</td>
<td>0.152</td>
<td>-1.113</td>
<td>-0.079</td>
<td>0.231</td>
<td></td>
</tr>
<tr>
<td></td>
<td>10y Predictive</td>
<td>0.231</td>
<td>-0.257</td>
<td>-0.074</td>
<td>0.305</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Extended Sample</td>
<td>0.183</td>
<td>-0.040</td>
<td>-0.051</td>
<td>0.234</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Contemp. Beta</td>
<td>0.149</td>
<td>0.042</td>
<td>0.080</td>
<td>0.070</td>
<td></td>
</tr>
<tr>
<td></td>
<td># of Months</td>
<td>57</td>
<td>60</td>
<td>63</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Conclusion

- The VRP and the market premium is related in a particular way
 - The contemporaneous relation between the price and variance explains why they are related
 - The contemporaneous beta is the slope that determines the predictive relation
 - Contemporaneous beta approach outperforms the traditional approach

- Possible extensions
 - What determines the market premium when the correlations are low?
 - How does dividend yield fit into this picture?