Problem 4.

Determine the deformation of a bar under its own weight. What is the equivalent load at the end of the bar that can replace the self-weight?

Consider the deformation of an element of length dz. The weight acting on it is

$$ P = \rho g A (L - z) $$

where $\rho =$ density of the bar; $A =$ cross-sectional area; $g =$ gravitational acceleration. Hence, the deformation of the element

$$ d\delta = \frac{P dz}{AE} = \frac{\rho g A (L - z) dy}{AE} $$

Total deformation of the bar

$$ \delta = \int_0^L \frac{\rho g}{E} (L - z) dz $$

$$ = \frac{\rho g}{E} \int_0^L (L - z) dz $$

$$ = \frac{\rho g}{E} \left(L^2 - \frac{L^2}{2} \right) $$

$$ = \frac{\rho g L^2}{2E} $$

Equivalent force at the end

$$ \sigma A $$

$$ = (E\epsilon) A $$

$$ = \frac{E}{L} \delta A $$

$$ = \frac{E \rho g L^2 A}{2EL} $$

$$ = \frac{1}{2} \frac{\rho g A L}{2} = \frac{W}{2} $$

where W is the total weight of the bar.

Problem 5.

Determine the deformation at point C. Assume the bar ACD is rigid.

$$ \sum F_y = 0 $$

$$ \Rightarrow F_{AB} + F_{DE} = 45 \text{ kN} $$

$$ \sum M_D = 0 $$

$$ \Rightarrow -F_{AB} \cdot (0.6 \text{ m}) + (45 \text{ kN}) \cdot (0.4 \text{ m}) = 0 $$

$F_{AB} = 30 \text{ kN}$

$F_{DE} = 15 \text{ kN}$
\[
\delta_{AB} = \frac{F_{AB} L_{AB}}{E_{AB} A_{AB}} = \frac{(30 \times 10^3 \text{ N}) \cdot (0.3 \text{ m})}{(200 \times 10^6 \text{ Pa}) \cdot (\pi(0.01^2) \text{ m}^2)} = 143 \times 10^{-6} \text{ m} = 0.143 \text{ mm}
\]

\[
\delta_{DE} = \frac{F_{DE} L_{DE}}{E_{DE} A_{DE}} = \frac{(15 \times 10^3 \text{ N}) \cdot (0.3 \text{ m})}{(70 \times 10^9 \text{ Pa}) \cdot (\pi(0.02^2) \text{ m}^2)} = 51 \times 10^{-6} \text{ m} = 0.051 \text{ mm}
\]

\[
\delta_C = \delta_{DE} + (\delta_{AB} - \delta_{DE}) \cdot \left(\frac{0.4 \text{ m}}{0.6 \text{ m}} \right) = 0.113 \text{ mm}
\]

Statically Indeterminate Problems

In these problems, equations of equilibrium are not enough to solve all the reactions. Hence, equations for compatibility are required.

Problem 6.

Consider the rod made of an outer layer with material 1 \((E_2 = 90\ \text{ GPa})\) and a core with material 1 \((E_1 = 45\ \text{ GPa})\). It is subjected to \(P = 70\ \text{kN}\). Calculate the stresses developed in each component of the rod.

Equation of Equilibrium: The total load \(P\) is carried by both materials. If \(P_1\) is the load carried by material 1 and \(P_2\) is the load carried by material 2

\[
P = P_1 + P_2 = 70\ \text{kN}
\]

Equation of Compatibility: Further, the deformations of both materials should be same.

\[
\delta = \delta_1 = \delta_2
\]

\[
\Rightarrow \frac{P_1 L}{E_1 A_1} = \frac{P_2 L}{E_2 A_2}
\]

\[
\Rightarrow P_1 = P_2 \left(\frac{E_1}{E_2} \right) \left(\frac{A_1}{A_2} \right)
\]

\[
\Rightarrow P_1 = P_2 \cdot \left(\frac{90}{45} \right) \cdot \left(\frac{\pi(0.04^2 - 0.02^2)}{\pi(0.02^2)} \right)
\]

\[
\Rightarrow P_1 = P_2 \cdot (2) \cdot (3)
\]

\[
\Rightarrow P_1 = 6P_2
\]
Hence, \(P_1 = 60 \text{ kN}, \) \(P_2 = 10 \text{ kN} \) and

\[
\sigma_1 = \frac{P_1}{A_1} = \frac{60 \times 10^3}{\pi (0.04^2 - 0.02^2)} = 15.91 \text{ MPa}
\]

\[
\sigma_2 = \frac{P_2}{A_2} = \frac{10 \times 10^3}{\pi (0.02^2)} = 7.96 \text{ MPa}
\]

Problem 7.

Determine the support reactions in the shown statically indeterminate structure. AC has \(E = 50 \text{ GPa} \) and CD has \(E = 100 \text{ GPa} \).

![Figure 21: Problem 7.](image)

Equation of Equilibrium:

\[+ \uparrow \sum F_y = 0\]

\[R_A + R_D = 50 \text{ kN} + 100 \text{ kN} = 150 \text{ kN}\]

Equation of Compatibility:

Assume the reaction at D is redundant and \(\delta_L = \) deformation due

Subhayan De, USC
to the load; \(\delta_R = \) deformation due to the reaction. Hence,

\[
\delta = \delta_L + \delta_R = 0
\]

\[
\delta_L = \delta_B + \delta_C + \delta_D
\]

\[
= - \frac{(50 \times 10^3 \text{ N}) \cdot (0.5 \text{ m})}{(50 \times 10^9 \text{ Pa}) \cdot (\pi(0.02^2) \text{ m}^2)} - \frac{(100 \times 10^3 \text{ N}) \cdot (1 \text{ m})}{(50 \times 10^9 \text{ Pa}) \cdot (\pi(0.02^2) \text{ m}^2)} = -1.99 \times 10^{-3} \text{ m}
\]

\[
\delta_R = \frac{(R_D) \cdot (0.5 \text{ m})}{(100 \times 10^9 \text{ Pa}) \cdot (\pi(0.01^2) \text{ m}^2)} + \frac{(R_D) \cdot (1 \text{ m})}{(50 \times 10^9 \text{ Pa}) \cdot (\pi(0.02^2) \text{ m}^2)} = 3.183 \times 10^{-8} R_D
\]

\[
R_D = \frac{1.99 \times 10^{-3}}{3.183 \times 10^{-8}} = 62500 \text{ N} = 62.5 \text{ kN}
\]

\[
R_A = 150 \text{ kN} - R_D = 87.5 \text{ kN}
\]

Problem 8.

Solve the same problem as before but allowing a 1 mm gap for the deformation of the bar as shown in the figure.

Equation of Equilibrium:

\[
\sum F_y = 0
\]

\[
R_A + R_D = 50 \text{ kN} + 100 \text{ kN} = 150 \text{ kN}
\]

Equation of Compatibility: \(\delta_L = \) deformation due to the load; \(\delta_R = \) deformation due to the reaction. Hence,

\[
\delta = \delta_L + \delta_R = -1 \times 10^{-3} \text{ m}
\]

\[
\delta_L = \delta_{AB} + \delta_{BC} + \delta_{CD}
\]

\[
= - \frac{(50 \times 10^3 \text{ N}) \cdot (0.5 \text{ m})}{(50 \times 10^9 \text{ Pa}) \cdot (\pi(0.02^2) \text{ m}^2)} - \frac{(100 \times 10^3 \text{ N}) \cdot (1 \text{ m})}{(50 \times 10^9 \text{ Pa}) \cdot (\pi(0.02^2) \text{ m}^2)} = -1.99 \times 10^{-3} \text{ m}
\]

\[
\delta_R = \frac{(R_D) \cdot (0.5 \text{ m})}{(100 \times 10^9 \text{ Pa}) \cdot (\pi(0.01^2) \text{ m}^2)} + \frac{(R_D) \cdot (1 \text{ m})}{(50 \times 10^9 \text{ Pa}) \cdot (\pi(0.02^2) \text{ m}^2)} = 3.183 \times 10^{-8} R_D
\]

\[
R_D = \frac{1.99 \times 10^{-3} - 1 \times 10^{-3}}{3.183 \times 10^{-8}} = 31250 \text{ N} = 31.25 \text{ kN}
\]

\[
R_A = 150 \text{ kN} - R_D = 118.75 \text{ kN}
\]

Problem 9.

Determine the stresses developed in members BE and CF \((E = 70 \text{ GPa}, \text{ radius } = 20 \text{ mm})\). Assume the bar ABCD is rigid.

Equation of Equilibrium:

\[
\sum F_x = 0
\]

\[
A_x = 0
\]

\[
\sum M_A = 0
\]

\[
F_{BE} \cdot (0.5 \text{ m}) + F_{CF} \cdot (1 \text{ m}) = (100 \text{ kN}) \cdot (1.5 \text{ m})
\]

\[
F_{BE} + 2F_{CF} = 300 \text{ kN}
\]
Equation of Compatibility:

\[2\delta_B = \delta_C \]
\[\Rightarrow \frac{2F_{BE}L_{BE}}{E_{BE}A_{BE}} = \frac{F_{CF}L_{CF}}{E_{CF}A_{CF}} \]
\[\Rightarrow \frac{2F_{BE} \cdot (0.5 \text{ m})}{(70 \times 10^9 \text{ Pa}) \cdot (\pi(0.02^2) \text{ m}^2)} = \frac{F_{CF} \cdot (0.5 \text{ m})}{(70 \times 10^9 \text{ Pa}) \cdot (\pi(0.02^2) \text{ m}^2)} \]
\[\Rightarrow 2F_{BE} = F_{CF} \]

Hence,

\[F_{BE} = 60 \text{ kN}, \quad F_{CF} = 120 \text{ kN} \]
\[\sigma_{BE} = \frac{F_{BE}}{A} = \frac{60 \times 10^3 \text{ N}}{\pi(0.02^2) \text{ m}^2} = 47.75 \times 10^6 \text{ Pa} = 47.75 \text{ MPa} \]
\[\sigma_{CF} = \frac{F_{CF}}{A} = \frac{120 \times 10^3 \text{ N}}{\pi(0.02^2) \text{ m}^2} = 95.5 \times 10^6 \text{ Pa} = 95.5 \text{ MPa} \]