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Recommender Systems 

• Information filtering system to predict the interest 
of users 

• Everywhere 

–   

–   

–   

–   

–   
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Collaborative Filtering 

• Apply machine learning algorithms to predict user’s 
rating for unrated items 

– Bayesian networks 

– Clustering 

– Matrix factorization  

• Stochastic gradient descent (SGD) 

–Achieves high prediction accuracy 

– Training is computation-intensive 
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Problem Definition (1) 

• Input is a partially filled rating matrix Ὑ 

– # of users = # of rows = |Ὗ|  

– # of items = # of columns = |ὠ|  
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Problem Definition (2) 
• Output contains two low-rank (i.e., Ὄ) matrices ὖ and ὗ 

– ὖ ὗ Ὑ 

– ὴ : the Ὥ  row of ὖ (latent feature vector of user ό) 

– ή ȡ the Ὦ  row of ὗ (latent feature vector of item ὺ) 

– ὶ: the rating of ὺ given by ό 

– ὶ  ὴϽή 
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• Training process aims to find ὖ and ὗ that minimizes overall 
squared prediction error (i.e., Вὶ ὶ ) 

• SGD-based approach 

 

Problem Definition (3) 

Our focus 

Randomly initialize each ὴ and ή 

While not done do  
For each known rating ὶ do 

Ὡὶὶ ὶ  ὴϽή 

  Update ὴ and ή based on Ὡὶὶ 

         End for 
End while 

Return ὖ and ὗ 



8 

Challenges in Acceleration (1) 

• Feature vectors do not fit in on-chip memory of FPGA 

• How to achieve efficient data reuse? 

 

Challenge 1 
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• Feature vector dependencies  

– Need to incrementally update feature vectors once per 
rating  

Challenges in Acceleration (2) 

Challenge 2 

Ὑ 

ὶ 
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ὴ 
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ὗ  
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Challenges in Acceleration (3) 

 

• Parallel processing units access on-chip RAMs 

– Concurrent accesses to the same RAM Ą conflicts  

• How to reduce access conflicts? 

Challenge 3 
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Contributions 

• Novel optimizations to address the three challenges 

– Partitioning and communication hiding 

• Completely overlap communication with computation 

– Parallelism extraction to reduce data dependencies by 28x – 60x 

– Scheduling to reduce bank conflicts by 2x – 4x  

• Sustain up to 217 GFLOPS for training large real-life datasets 

• Achieve 13.3x and 12.7x speedup compared with highly 
optimized multicore and GPU implementations 

• Generic technique to accelerate SGD-based training  
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Bipartite Graph Representation 
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Optimization 1 (1) 

Graph Partitioning 
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Optimization 1 (2) 
Communication Hiding 

2ÅÁÄ &6Ó 7ÒÉÔÅ &6Ó #ÏÍÐÕÔÅ 4ÉÍÅ 3ÕÂÇÒÁÐÈ 

If   $ÅÎÓÉÔÙ3ÕÂÇÒÁÐÈ
ͺ ͺ

ͺ
ὥὥᶅᾀȟ  

the communication can be completely overlapped with the computation 

2ÅÁÄ &6Ó 7ÒÉÔÅ &6Ó #ÏÍÐÕÔÅ 

2ÅÁÄ &6Ó 7ÒÉÔÅ &6Ó #ÏÍÐÕÔÅ 

3ÕÂÇÒÁÐÈ 

3ÕÂÇÒÁÐÈ 
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• Objective: each subgraph should have sufficient edges for the 
computation to hide the communication 

• Fast heuristic partitioning approach 

– Subset degree of a vertex subset  

• number of edges that connect to the vertices in the subset 

– Balance subset degrees of distinct vertex subsets 

• Sort vertices based on vertex degree 

• Greedy assignment of each vertex into the non-full vertex 
set that has the minimum subset degree  

Optimization 1 (3) 

Graph Partitioning and Communication Hiding 
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Optimization 2 

• Partition the edges of each subgraph into non-
overlapping matchings 

– Edges in the same matching have no common vertices 
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Parallelism Extraction 



18 

Edge Scheduling 

• Partition the edges in each matching into batches 

– Sort the edges based on the conflict index (i.e., the 
number of edges in the matching that have conflict with 
this edge) 

– Assign each edge to the batch where its addition does 
not increase the conflicts within the batch 

Optimization 3 
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Architecture of FASTCF 

Multi-ported RAM 
based on banking 

Check FV dependencies based 
on fine-grained locking 

Parallel processing 
units to process 
distinct edges 

Resolve bank 
conflicts to feature 

vector buffer 
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Experimental Setup 

• Real-life datasets 

 

 

 

 

• Virtex UltraScale+ xcvu9pflgb2104 FPGA (for training) 
– 43 MB of on-chip RAM 

• Intel Xeon E5-2686 processor (for pre-processing) 

– 8 cores @ 2.3 GHz 

 

 

 

Dataset # users # items # ratings Description 

Libim 135 K 168 K 17,359 K Dating ratings 

Netflix 480 K 17 K 100,480 K Movie ratings 

Yahoo 1,200 K 136 K 460,380 K Music ratings 
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Pre-processing Overhead 

Dataset 4   4   4   4  
4

4
 

Libim 0.4 sec 4.4 sec 2.7 sec 7.5 sec 2.1% 

Netflix 1.0 sec 10.7 sec 7.0 sec 18.7 sec 2.1% 

Yahoo 5.5 sec 42.3 sec 23.0 sec 70.8 sec 2.8% 

Pre-processing overhead can be amortized since the training is 
iterative 

• 4  = 4    4  4   
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Performance vs. Parallelism 
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Impact of Optimization 1 

Communication Hiding  

Data 
set 

4  per  
iteration (sec) Speedup 

Opt. Base. 

Libim 0.03 0.04 1.3x 

Netflix 0.15 0.16 1.1x 

Yahoo 0.68 0.76 1.1x 

• Optimized design: Opt 1 + Opt 2 + Opt 3 
• Baseline design: Opt 2 + Opt 3 



25 

Impact of Optimization 2 
Pipeline stall reduction 

Data 
set 

Pipeline stalls due to 
dependencies Reduction 

4  per  
iteration (sec) Speedup 

Opt. Base. Opt. Base. 

Libim 2,005 K 57,524 K 28.7x 0.03 0.40 13.3x 

Netflix 6,151 K 314,884 K 51.2x 0.15 2.19 14.6x 

Yahoo 24,954 K 1,500,295 K 60.1x 0.68 10.45 15.4x 

• Optimized design: Opt 1 + Opt 2 + Opt 3 
• Baseline design: Opt 1 + Opt 3 
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Impact of Optimization 3 

Bank conflict reduction 

Data 
set 

Bank conflicts 
Reduction 

4  per 
iteration (sec) Speedup 

Opt. Base. Opt. Base. 

Libim 1,165 K 2,798 K 2.4x 0.03 0.04 1.3x 

Netflix 3,960 K 16,686 K 4.2x 0.15 0.23 1.5x 

Yahoo 19,393 K 75,524 K 3.9x 0.68 1.03 1.5x 

• Optimized design: Opt 1 + Opt 2 + Opt 3 
• Baseline design: Opt 1 + Opt 2 
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Comparison with State-of-the-art 

Approach Platform 
Processor 

Power 
Exec. Time  

per Iteration 
Speedup 

SIGMOD ’14 
24-core  

Intel E5-2697 
130 W 2.00 sec 

13.3x 

This paper Virtex UltraScale+ 14 W 0.15 sec 

GPGPU ’15 
2880-core  

Tesla K40C GPU 
235 W 1.90 sec 

12.7x 

This paper Virtex UltraScale+ 14 W 0.15 sec 

Up to 13.3x speedup for training the Netflix dataset 
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• Accelerate other data science problems that derive latent 
features from observations  
– Topic modeling/extraction 

– Word embedding 

 

• Techniques for accelerating SGD-based training 
algorithms 

 

• Generic optimizations applicable to other platforms 
  

 

Impact of This Work 
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Conclusion 
• Developed FASTCF to accelerate SGD-based CF 

 

• Designed three optimizations to 

– completely overlap communication with computation 

– reduce data dependencies to extract parallelism  

– reduce bank conflicts   

 

• Achieved a high throughput of up to 217 GFLOPS for 
training large real-life datasets 

 

• Achieved 13.3x and 12.7x speedup compared with state-of-
art multicore and GPU implementations 
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fpga.usc.edu


