
FPGA 2018

FASTCF: FPGA-based Accelerator for
STochastic-gradient-descent-based Collaborative Filtering

Shijie Zhou, Rajgopal Kannan, Min Yu, Viktor K. Prasanna

2

Outline

• Introduction

• Optimizations and Accelerator Design

• Experimental Results

• Impact

• Conclusion

3

Recommender Systems

• Information filtering system to predict the interest
of users

• Everywhere

–

–

–

–

–

4

Collaborative Filtering

• Apply machine learning algorithms to predict user’s
rating for unrated items

– Bayesian networks

– Clustering

– Matrix factorization

• Stochastic gradient descent (SGD)

–Achieves high prediction accuracy

– Training is computation-intensive

5

Problem Definition (1)

• Input is a partially filled rating matrix Ὑ

– # of users = # of rows = |Ὗ|

– # of items = # of columns = |ὠ|

6

Problem Definition (2)
• Output contains two low-rank (i.e., Ὄ) matrices ὖ and ὗ

– ὖ ὗ Ὑ

– ὴ : the Ὥ row of ὖ (latent feature vector of user ό)

– ή ȡ the Ὦ row of ὗ (latent feature vector of item ὺ)

– ὶ: the rating of ὺ given by ό

– ὶ ὴϽή

7

• Training process aims to find ὖ and ὗ that minimizes overall
squared prediction error (i.e., Вὶ ὶ)

• SGD-based approach

Problem Definition (3)

Our focus

Randomly initialize each ὴ and ή

While not done do
For each known rating ὶ do

Ὡὶὶ ὶ ὴϽή

 Update ὴ and ή based on Ὡὶὶ

 End for
End while

Return ὖ and ὗ

8

Challenges in Acceleration (1)

• Feature vectors do not fit in on-chip memory of FPGA

• How to achieve efficient data reuse?

Challenge 1

 ἏὀἼἭἺἶἩἴ Memory

 ἐἜἑἋ

On-chip
RAM

P

Q

9

• Feature vector dependencies

– Need to incrementally update feature vectors once per
rating

Challenges in Acceleration (2)

Challenge 2

Ὑ

ὶ

ὖ

ὴ

ή

ὗ

ὶ ὴ

10

Challenges in Acceleration (3)

• Parallel processing units access on-chip RAMs

– Concurrent accesses to the same RAM Ą conflicts

• How to reduce access conflicts?

Challenge 3

On-chip
RAM

Pἣ

Pἣ

Pἣ

Pἣ

 ἐἜἑἋ

11

Contributions

• Novel optimizations to address the three challenges

– Partitioning and communication hiding

• Completely overlap communication with computation

– Parallelism extraction to reduce data dependencies by 28x – 60x

– Scheduling to reduce bank conflicts by 2x – 4x

• Sustain up to 217 GFLOPS for training large real-life datasets

• Achieve 13.3x and 12.7x speedup compared with highly
optimized multicore and GPU implementations

• Generic technique to accelerate SGD-based training

12

Outline

• Introduction

• Optimizations and Accelerator Design

• Experimental Results

• Impact

• Conclusion

13

Bipartite Graph Representation

ό

ό

ό

ὺ

ὺ

1

2

4

3.5

5

╖

╡ ό

User vertices Items vertices

6

14

Optimization 1 (1)

Graph Partitioning

ό

ό

ό

ὺ

ὺ

1

2

4

3.5 5

ό

ό

ό

ὺ

ὺ

1

2

5

3ÕÂÇÒÁÐÈ 3ÕÂÇÒÁÐÈ 6
ό

ὺ

ὺ

4

3.5

ό

6

15

Optimization 1 (2)
Communication Hiding

2ÅÁÄ &6Ó 7ÒÉÔÅ &6Ó #ÏÍÐÕÔÅ 4ÉÍÅ 3ÕÂÇÒÁÐÈ

If $ÅÎÓÉÔÙ3ÕÂÇÒÁÐÈ
ͺ ͺ

ͺ
ὥὥᶅᾀȟ

the communication can be completely overlapped with the computation

2ÅÁÄ &6Ó 7ÒÉÔÅ &6Ó #ÏÍÐÕÔÅ

2ÅÁÄ &6Ó 7ÒÉÔÅ &6Ó #ÏÍÐÕÔÅ

3ÕÂÇÒÁÐÈ

3ÕÂÇÒÁÐÈ

16

• Objective: each subgraph should have sufficient edges for the
computation to hide the communication

• Fast heuristic partitioning approach

– Subset degree of a vertex subset

• number of edges that connect to the vertices in the subset

– Balance subset degrees of distinct vertex subsets

• Sort vertices based on vertex degree

• Greedy assignment of each vertex into the non-full vertex
set that has the minimum subset degree

Optimization 1 (3)

Graph Partitioning and Communication Hiding

17

Optimization 2

• Partition the edges of each subgraph into non-
overlapping matchings

– Edges in the same matching have no common vertices

ό

ό

ό

ὺ

ὺ

ὺ

ό

ό

ό

ὺ

ὺ

ὺ

Edge coloring

Parallelism Extraction

18

Edge Scheduling

• Partition the edges in each matching into batches

– Sort the edges based on the conflict index (i.e., the
number of edges in the matching that have conflict with
this edge)

– Assign each edge to the batch where its addition does
not increase the conflicts within the batch

Optimization 3

19

Architecture of FASTCF

Multi-ported RAM
based on banking

Check FV dependencies based
on fine-grained locking

Parallel processing
units to process
distinct edges

Resolve bank
conflicts to feature

vector buffer

20

Outline

• Introduction

• Optimizations and Accelerator Design

• Experimental Results

• Impact

• Conclusion

21

Experimental Setup

• Real-life datasets

• Virtex UltraScale+ xcvu9pflgb2104 FPGA (for training)
– 43 MB of on-chip RAM

• Intel Xeon E5-2686 processor (for pre-processing)

– 8 cores @ 2.3 GHz

Dataset # users # items # ratings Description

Libim 135 K 168 K 17,359 K Dating ratings

Netflix 480 K 17 K 100,480 K Movie ratings

Yahoo 1,200 K 136 K 460,380 K Music ratings

22

Pre-processing Overhead

Dataset 4 4 4 4
4

4

Libim 0.4 sec 4.4 sec 2.7 sec 7.5 sec 2.1%

Netflix 1.0 sec 10.7 sec 7.0 sec 18.7 sec 2.1%

Yahoo 5.5 sec 42.3 sec 23.0 sec 70.8 sec 2.8%

Pre-processing overhead can be amortized since the training is
iterative

• 4 = 4 4 4

23

Performance vs. Parallelism

0

100

200

300

1 2 4 8

Libim Netflix Yahoo

Number of parallel processing units (ὓ)

T
h

ro
u

g
h

p
u

t
(G

F
L
O

P
S

)

47

217

93

163

24

Impact of Optimization 1

Communication Hiding

Data
set

4 per
iteration (sec) Speedup

Opt. Base.

Libim 0.03 0.04 1.3x

Netflix 0.15 0.16 1.1x

Yahoo 0.68 0.76 1.1x

• Optimized design: Opt 1 + Opt 2 + Opt 3
• Baseline design: Opt 2 + Opt 3

25

Impact of Optimization 2
Pipeline stall reduction

Data
set

Pipeline stalls due to
dependencies Reduction

4 per
iteration (sec) Speedup

Opt. Base. Opt. Base.

Libim 2,005 K 57,524 K 28.7x 0.03 0.40 13.3x

Netflix 6,151 K 314,884 K 51.2x 0.15 2.19 14.6x

Yahoo 24,954 K 1,500,295 K 60.1x 0.68 10.45 15.4x

• Optimized design: Opt 1 + Opt 2 + Opt 3
• Baseline design: Opt 1 + Opt 3

26

Impact of Optimization 3

Bank conflict reduction

Data
set

Bank conflicts
Reduction

4 per
iteration (sec) Speedup

Opt. Base. Opt. Base.

Libim 1,165 K 2,798 K 2.4x 0.03 0.04 1.3x

Netflix 3,960 K 16,686 K 4.2x 0.15 0.23 1.5x

Yahoo 19,393 K 75,524 K 3.9x 0.68 1.03 1.5x

• Optimized design: Opt 1 + Opt 2 + Opt 3
• Baseline design: Opt 1 + Opt 2

27

Comparison with State-of-the-art

Approach Platform
Processor

Power
Exec. Time

per Iteration
Speedup

SIGMOD ’14
24-core

Intel E5-2697
130 W 2.00 sec

13.3x

This paper Virtex UltraScale+ 14 W 0.15 sec

GPGPU ’15
2880-core

Tesla K40C GPU
235 W 1.90 sec

12.7x

This paper Virtex UltraScale+ 14 W 0.15 sec

Up to 13.3x speedup for training the Netflix dataset

28

Outline

• Introduction

• Optimizations and Accelerator Design

• Experimental Results

• Impact

• Conclusion

29

• Accelerate other data science problems that derive latent
features from observations
– Topic modeling/extraction

– Word embedding

• Techniques for accelerating SGD-based training
algorithms

• Generic optimizations applicable to other platforms

Impact of This Work

30

Conclusion
• Developed FASTCF to accelerate SGD-based CF

• Designed three optimizations to

– completely overlap communication with computation

– reduce data dependencies to extract parallelism

– reduce bank conflicts

• Achieved a high throughput of up to 217 GFLOPS for
training large real-life datasets

• Achieved 13.3x and 12.7x speedup compared with state-of-
art multicore and GPU implementations

Comments & Questions

fpga.usc.edu

