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Recommender Systems

 Information filtering system to predict the interest
of users
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Collaborative Filtering
* Applymachine learning algorithntso pr e d i1
rating for unrated items
— Bayesian networks
— Clustering
— Matrix factorization

 Stochastic gradient descent (SGD)
— Achievedigh prediction accuracy
— Training IS computationintensive
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Problem Definition (1)

 Input is a partially filled rating matri¥
— # of users = # of rows =Y
— # of items = # of columns =
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Problem Definition (2)

- Output contains two lowrank (i.e.;O matricesd and0
-0 0 Y
— 1 :the"Q row of ¥ (latentfeature vectorof usero )
— 1 dthe’Q row of O (latentfeature vectorof item 0 )

— | :the rating ofb given byo
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Problem Definition (3)

» Training process aim#o find 0 and0 that minimizes overall
sguaredprediction error

« SG[based approach
Randomlyinitialize each) andn

_While not done do Our focus |

- For each known rating do |
Qi i 1 n a |
Updaten andr] based orQi I

. End for |

-End while : /

Returnd and 0
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Challenges in Acceleration (1)

Challenge 1

« Feature vectors do not fit in eahip memory of FPGA
« How to achieve efficient data reuge
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Challenges in Acceleration (2)

Challenge 2

* Feature vector dependencies

— Needto incrementally update feature vectorsnce per
rating
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Challenges in Acceleration (3)

Challenge 3

« Parallel processing units accessaimp RAMS
— Concurrent accesses the same RAM\ conflicts
 How to reduce access conflicts?
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Contributions

* Novel optimizations to address the three challenges
— Partitioning and communication hiding
* Completely overlap communication with computation
— Parallelism extraction toeduce datadependencies b28x — 60x

— Scheduling to reduce bank conflicts 2y~ 4x

« Sustainup to 217 GFLOPS for training large realife datasets

« Achievel3.3x and12.7x speedup compared with highly
optimized multicore and GPU implementations

* Generic technique to accelerate SGa&sed training
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* Optimizations and Accelerator Design
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Bipartite Graph Representation

User vertices Items vertices
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Optimization 1 (1)
Graph Partitioning
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Optimization 1 (2)

Communication Hiding
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the communication can beompletely overlapped with the computation
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Optimization 1 (3)

Graph Partitioning and Communication Hiding

* Objective: eaclsubgraphshould have sufficieredgesfor the
computation to hide the communication

 Fastheuristic partitioningapproach
— Subsetdegree of a vertesubset
« number of edgeshat connectto the vertices in the subset
— Balance subseategreesof distinct vertex subsets
« Sort vertices based on vertex degree

« Greedy assignment of each vertex inbh@ nonfull vertex
set that has the minimum subset degree
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Optimization 2

Parallelism Extraction

 Partitionthe edges of eachubgraphnto non
overlappingmatchings
— Edgesn the same matchin@aveno common vertices

Edge coloring
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Optimization 3

Edge Scheduling

 Partition the edges in each matching into batches

— Sort the edges based on tlwenflict index(i.e.,the
number ofedges in thematching that haveonflictwith
thisedge)

— Assign eaclkdge to thebatch where itsaddition does
not increasehe conflicts withinthe batch

USC Viterbi
School of Engineering




Architecture of FASTCF
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* Experimental Results
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Experimental Setup

 Reallife datasets

Dataset # users # items # ratings Description
Libim 135 K 168 K 17,359 K Datingratings
Netflix 480 K 17 K 100,480 K Movie ratings
Yahoo 1,200 K 136 K 460,380 K Music ratings

 VirtexUltraScale xcvu9pflgh2104 FPGA (for training)

— 43 MB of orchip RAM

 Intel Xeon E2686 processor (for prprocessing)
— 8 cores @ 2.3 GHz
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Pre-processing Overhead

e 4 =4 4 4
4
Dataset | 4 4 4 4 7
Libim 0.4sec| 44sec| 2.7sec| 7.5sec 2.1%

Netflix | 1.0sec| 10.7 sec| 7.0sec| 18.7 sec 2.1%

Yahoo | 5.5sec | 42.3 sec| 23.0seq 70.8 sec 2.8%

__——— 7

Pre-processingpverhead can be amortized since the training i
iterative
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Performance vs. Parallelism
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Impact of Optimization 1

Communication Hiding

« Optimized design: Opt 1 + Opt 2 + Opt 3
» Baseline design: Opt 2 + Opt 3

4 per
Dsztta iteration (sec) Speedup
Opt. Base.
Libim 0.03 0.04 1.3x
Netflix 0.15 0.16 1.1x
Yahoo 0.68 0.76 1.1x
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Impact of Optimization 2
Pipeline stall reduction

« Optimized design: Opt 1 + Opt 2 + Opt 3
» Baseline design: Opt 1 + Opt 3

Pipelinestalls due to 4 per
Datta dependencies Reduction Iteration (sec) | Speedup
se

Opt. Base. Opt. | Base.

Libim | 2,005K | 57,524 K | 28.7x 0.03 | 0.40 | 13.3x

Netflix| 6,151 K| 314,884 K| 51.2x 0.15 | 2.19 | 14.6x

Yahoo| 24,954 K| 1,500,295 K 60.1x 0.68 | 10.45| 15.4x
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Impact of Optimization 3

Bank conflict reduction

* Optimized design: Opt 1 + Opt 2 + Opt 3
« Baseline design: Opt 1 + Opt 2

Bank conflicts 4 per
Dsztta Reduction teration (sec) | speedup
Opt. Base. Opt. | Base.

Libim | 1,165K | 2,798 K| 2.4x 0.03 | 0.04 1.3x

Netflix | 3,960 K| 16,686 K  4.2x 0.15 | 0.23 1.5x

Yahoo| 19,393 K 75,524 K 3.9x 0.68 1.03 1.5x
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Comparison with State-of-the-art

Up to 13.3x speedup for training the Netflix dataset

Aobroach Processor Exec. Time Speedu
PP Power per Iteration P P

4-core
S| GMOD ' 1 4% 130W 2.00 sec
13.3x
Thispaper VirtexUltraScale 14 W 0.15 sec
880-core
GPGPU ' L5 o 235W 1.90 sec
12.7x
Thispaper VirtexUltraScale 14 W 0.15 sec
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Impact of This Work

* Accelerate other data science problems that derive latent
features from observations

— Topic modeling/extraction
— Word embedding

« Techniques for accelerating S®B&sed training
algorithms

* Generic optimizations applicable to other platforms
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Conclusion
* Developed FASTCF to accelerate-8&ded CF

« Designed three optimizations to
— completely overlap communication with computation
— reduce data dependencies to extract parallelism
— reduce bank conflicts

« Achieveda high throughput of up to 217 GFLOPS for
training large realife datasets

« Achieved 13.3x and 12.7x speedup compared with st&te
art multicore and GPU implementations
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