Performance Measures for Electricity Consumption Prediction

Saima Aman
(Advisors: Yogesh Simmhan and Viktor K. Prasanna)

Problem: Evaluation of KWh prediction

Motivation: Dynamic Demand Response (D^3R)

Dynamic decision making for
- start time
- duration
- depth (kWh)
- customer selection
- curtailment strategy selection

Need for novel Performance Measures

Prediction Bias
- understand the frequency of over- or under-prediction
- under-prediction might miss the peak

Scale Independence
- compare across different scales (unlike MAE, RMSE)
- address diversity in customers

Reliability
- how often the model performs better than a baseline or within an error threshold

Cost
- quantify the cost of collecting data, training and applying a model for prediction

Volatility
- risk-adjusted improvement over baseline
- factor in volatility of model with respect to baseline

Domain Bias Percentage Error (DBPE) An asymmetric loss function is used to assign different costs to over and under predictions. These costs are application-specific. (Reduces to MAPE when costs are same)

\[
DBPE = \frac{1}{n} \sum_{i=1}^{n} \frac{L(p_i, o_i)}{o_i} \quad L(p_i, o_i) = \begin{cases}
\alpha |p_i - o_i|, & \text{if } p_i > o_i \\
0, & \text{if } p_i = o_i \\
\beta |p_i - o_i|, & \text{if } p_i < o_i
\end{cases}
\]

Coefficient of Variation of RMSE (CV-RMSE) The root mean square error is divided by the mean of observed values. The normalized RMSE can then be used to compare across scales.

\[
CVRMSE = \frac{1}{\bar{o}} \sqrt{\frac{1}{n} \sum_{i=1}^{n} (p_i - o_i)^2}
\]

Reliability, REL Measures the count of performances less than the error threshold.

\[
REL = \frac{1}{n} \sum_{i=1}^{n} C(p_i, o_i)
\]

\[
C(p_i, o_i) = \begin{cases}
1, & \text{if } |p_i - o_i| < \epsilon_i \\
0, & \text{otherwise}
\end{cases}
\]

Relative Improvement, RIM Measures the count of performances better than the baseline.

\[
RIM = \frac{1}{n} \sum_{i=1}^{n} C(p_i, o_i, b_i)
\]

\[
C(p_i, o_i, b_i) = \begin{cases}
1, & \text{if } |p_i - o_i| < |b_i - o_i| \\
0, & \text{otherwise}
\end{cases}
\]

Data Cost, DC The number of unique values of all features in the model.

Compute Cost, CC The time in seconds required to train a model

Normalized Model cost, C = f(DC, CC)/m

Cost-Benefit Metric, CBM Measures the relative benefit of using a model with respect to normalized cost.

\[
CBM = \frac{(1 - CVRMSE)}{C}
\]

Initial Results

Error Measures (smaller is better)

Goodness Measures (larger is better)