A FINE-GRAINED ANALYSIS OF POST-STROKE MOTOR FUNCTION USING WEARABLE MOTION SENSORS

Mi Zhang1, Bellinda Lange2, Chien-Yen Chang3, and Alexander A. Sawchuk1

1Signal and Image Processing Institute, Ming Hsieh Department of Electrical Engineering, University of Southern California, Los Angeles CA 90089
2Institute for Creative Technologies, University of Southern California, Playa Vista CA 90094

Introduction

• Background
 • Stroke is a leading cause of motor deficit
 • Every year, approximately 795,000 people experience a new or recurrent stroke in the US
 • Motor function can be recovered through physical rehabilitation
 • Traditional physical rehabilitation assessment has two major drawbacks
 • Assessment is based on the clinician's subjective judgments
 • Standard clinical rating scales such as Fugl-Meyer Assessment (FMA) and Wolf Motor Function Test (WMFT) cannot provide the details of motor performance

• Problem Statement
 • Develop a quantitative method to automatically analyze and evaluate post-stroke motor function

• Challenges
 • Need a tool to precisely capture patients' physical motion
 • Need to build a motion model that is able to capture the details of motor behavior

Data Collection

• Participants
 • 2 patients with limb hemiparesis from stroke are recruited at Precision Rehabilitation Center at Long Beach and Rancho Los Amigos National Rehabilitation Center at Downey

• Motor Tasks
 • 5 upper limb motor tasks from the Fugl-Meyer Assessment (FMA) are performed
 • Flex Synergy
 • Hand Behind Back
 • Shoulder Flexion to 90 degree
 • Shoulder Flexion from 90 to 180 degree
 • Pronation / Supination Elbow Flexed
 • Each participant performed each motor task 6 times
 • Each task was assigned a score based on the FMA scale (0, 1, 2) by a physical therapist

Our Method

• Wearable Motion Sensor
 • 3-axis accelerometer (± 6g), 3-axis gyroscope (± 500 dps)
 • Sampling rate: 100 Hz

• Fine-Grained Post-Stroke Motor Function Analysis Framework
 • Sliding Window
 • Feature Extraction
 • Pattern Recognition

Results

• Motor Task:
 • Flex Synergy
 • Horizontal Axis:
 • Time (Second)
 • Vertical Axis:
 • Motion Intensity
 • Unaffected limb:
 • Red curve
 • FMA score: 12/12
 • Affected limb:
 • Blue curve
 • FMA score: 8/12
 • There exist two peaks for the unaffected limb which do not appear for the affected limb

Details

• Small Window Case
 • Divide the streaming sensor data from each motor task segment into a sequence of fixed length window with whose length is much smaller than the duration of the motor task (0.1 second)

• Feature Extraction
 • Extracted from each window cell to form a local feature vector
 • Features that capture the intrinsic characteristics of the motor behavior. Example include:
 • Motion Intensity (MI):
 \[
 MI(t) = \sqrt{\sum_{i=1}^{N} (x_i(t))^2}
 \]
 • Normalized Signal Magnitude Area (NSMA):
 \[
 NSMA = \frac{1}{2} \sum_{i=1}^{N} x_i(t)
 \]
 • Averaged Rotation Energy (ARE): The mean value of the energy over three gyroscope axes
 • Each motor task segment is then transformed into a sequence of local feature vectors, which forms a trajectory in the feature space

• Pattern Recognition
 • Extract pattern interesting to physical therapists

Conclusion and Future Work

• Conclusion
 • We present a methodology for fine-grained assessments of post-stroke motion functionalities using wearable motion sensors
 • Our approach provides quantitative evaluations on motor function based on sensor signals and acts as a significant complement to the standard clinical rating scales

• Future Work
 • Build a large database to include more patients
 • Develop signal processing algorithm to automatically capture patterns that are important to physical therapists to track patients’ progress during rehabilitation
 • Integrate with other sensing modalities, such as vision sensor (Microsoft Kinect)

Images from Kinect-based rehabilitation tool: JewelWine, developed at USC Institute for Creative Technologies.