Robust Human Activity and Sensor Location Co-Recognition via Sparse Signal Representation

Wenyao Xu, Student Member, IEEE, Mi Zhang, Student Member, IEEE, Alexander A. Sawchuk, Fellow, IEEE, Majid Sarrafzadeh, Fellow, IEEE

Abstract—Human activity recognition with wearable body sensors receives lots of attentions in both research and industrial communities due to the significant role in ubiquitous and mobile health monitoring. One of the most concerned issues related to this wearable technology is that the sensor signals significantly depend on where the sensors are worn on the human body. Existing research work either extracts location information from the activity signals or takes advantage of the sensor location information as a priori information to achieve better activity recognition performance. In this paper, we present a sparse signal based approach to co-recognize human activity and sensor location in a single framework. Therefore, the wearable sensor is not necessarily constrained to fixed body position and the deployment is much easier although the recognition difficulty becomes much more challenging. To validate the effectiveness of our approach, we run a pilot study in the lab, which includes 14 human activities and 7 on-body locations to recognize. The experimental results show that our approach achieves an 87.72\% classification accuracy (the mean of precision and recall), which outperforms classical classification methods.

I. INTRODUCTION

Daily activities and behaviors is a key indicator of human health status. In recent years, a lot of clinical studies prove that human activity and behaviors is highly related to medical diseases, such as obesity [1], autism [2], and cerebral palsy [3]. Therefore, it is important to enable accurate human activity measurements, and proven data can be used as the evidence for medical diagnosis and treatment.

Currently there are two main methods to monitor human activities. One is to deploy the remote sensors (such as camera, radar and infrared) in infrastructure such as parking lots, office buildings and airports. Park and Trivedi [4] presented a camera-based tracking system for human movement analysis and privacy protection. Kim and Ling [5] investigated the feasibility of classifying different human activities based on micro-Doppler signatures. Han and Bhanu [6] developed a hierarchical scheme to automatically detect human movements via infrared sensors. However, one commonly key drawback is that the sensing scope of these remote sensors is immobile and limited due to fixed deployment position. Information may be lost if people leave the field of view of the sensors. Moreover, because of the privacy issue, users will feel uncomfortable when their daily activities are under monitor.

The other method is to attach the inertial sensors (accelerometer, gyroscope and etc.) on the human body to sensor the motor of body parts. Bouten et al. [7] described the development of a triaxial accelerometer and a portable data processing unit for the assessment of daily physical activity. Najafi et al. [8] introduced a gyroscope-based ambulatory system to detect body postures in elderly persons. With advances in MEMS technologies, inertial sensors have become popular in recent years for human activity sensing and tracking since they are low-cost, miniature and easy to be integrated into personal carry-on devices such as smart phones, watches, and apparel (e.g. shoes, clothes and hats). Figure 1 illustrates a number of examples of on-body sensing devices integrated with inertial sensors. We can see that different devices will be deployed on different locations on the human body accordingly. Therefore, the activity signals captured by inertial sensors are highly dependent on both the human activity and the location where the sensors are worn. In other words, it is highly possible that the signals may be totally different when a person performs the same activity with sensors on different locations. Therefore, any misplacement or displacement might lose the sensing accuracy and make the analysis completely incorrect [9].

Fig. 1. Examples of on-body inertial sensing devices for human activity monitoring and recognition: 1) Nike+; 2) BodyMedia; 3) Healthset; 4) Basis Band; 5) Fitbit.

Based on this observation, it is difficult to understand the inertial sensor signal without any priori information. In fact, researchers have been developing techniques to either extract
location information from the captured activity signals or take advantage of the sensor location information as a priori information to achieve better activity recognition performance. For example, Vahdatpour et al. [10] developed a SVM-based approach to identify the sensor location on the human body when people walk. Long et al. [11] customized the activity recognition algorithm to specific sensor locations to improve the performance of the recognizer. Among all these existing techniques, the common point is that they treat sensor localization and activity recognition as two separate problems assuming the other part information is known. Unfortunately, either of them will be available in practical applications. In this paper, we argue that the sensor location information and the activity signals are intertwined and can be solved as one problem.

We proposed the solution to co-recognize human activity and sensor location in a single framework, which is not necessary to have any priori information about sensor and human activity. Specifically, our framework uses sparse signal theory, which enables to reconstruct the signal with limited or incomplete samples if the signal has sparsity in some transformation domain [12]. Here, we prove that human activity signals captured by wearable inertial sensors are indeed sparse, and then take advantage of this sparsity information to classify activity signals and recognize where the sensor is located on the human body simultaneously. Based on our experiments, our method can recognize 14 activities and 7 on-body locations with 87.72% recognition accuracy on average.

The remainder of this paper is organized as follows. In Section II we briefly introduce the theory of sparse signals and review some existing work on human activity recognition based on the theory. Then, we describe our human activity and sensor location co-recognition framework in Section III. The experimental results and analysis are presented in Section IV. Finally, we outline the future work and conclude the paper in Section V.

II. PRELIMINARY AND RELATED WORK

A. Sparse Signals and ℓ_1 Minimization

Sparse signal processing (or compressed sensing) [12] is a ground-breaking signal processing procedure developed recent years. It has been widely applied in many research domains such as communications, medical image processing and computer graphics due to its capability of accurate signal reconstruction with lower sampling rate claimed by Nyquist-Shannon sampling theorem [13].

Suppose that $x \in \mathbb{R}^n$ is a vector of unknown variables, $y \in \mathbb{R}^m$ is the available measurements, and $A \in \mathbb{R}^{m \times n}$ is the data matrix to describe the relation between x and y. Then, we have:

$$ y = Ax. $$

In many real-world applications, the number of unknowns, n, is more than the number of measurements, m, i.e. $n > m$. In such cases, Eq. (1) represents an underdetermined system, and x can not be uniquely reconstructed from the data matrix A and the measurements y. However, in situations where x is sparse enough, we can reconstruct x with the ℓ_0 sparsity formulation from:

$$ \min_{x \in \mathbb{R}^n} \| x \| \ell_0 \quad \text{s.t.} \quad y = Ax. \quad (2) $$

Eq. (2) is a determined system and has stable solution. However, Eq. (2) is intractable because it is an NP-hard problem [14]. The traditional heuristic to approximate the sparsity ℓ_0 is to use the minimal energy ℓ_2:

$$ \min_{x \in \mathbb{R}^n} \| x \| \ell_2 \quad \text{s.t.} \quad y = Ax. \quad (3) $$

It is well-known that ℓ_2 is a least square formation and can be efficiently solved. However, the energy minimization ℓ_2 is not necessarily equivalent to the sparsity ℓ_0 in most cases. In 2006, the authors of [13] proved that the solution of Eq. (2) is highly the same as the solution with the ℓ_1 minimization.

$$ \min_{x \in \mathbb{R}^n} \| x \| \ell_1 \quad \text{s.t.} \quad y = Ax. \quad (4) $$

It has been proved that this ℓ_1 minimization can be formulated as a convex problem [12]. In such case, the optimization problem is well-posed and can be solved in polynomial time.

B. Sparse Signals for Pattern Recognition

One important application of sparse signals is pattern recognition and classification. In recent years, it has been applied successfully to many pattern recognition problems including face recognition [15], speech recognition [16], and iris recognition [17]. The formulation of sparse signal based classification strategy is relatively straightforward. Consider a pattern recognition problem with K different classes. Each class k has n_k training samples, each having m attributes. In total, there are $n = \sum_{i=1}^{K} n_i$ training samples. We can collect all these training samples to form a matrix A with m rows and n columns as follows:

$$ A = [A_1, A_2, \ldots, A_k] = [a_{11}, a_{12}, \ldots, a_{1n_1}, a_{21}, a_{22}, \ldots, a_{2n_2}, \ldots, a_{n_1}, a_{n_2}, \ldots, a_{kn_k}], $$

where a_{ij} is the j-th training sample from class i.

Following Eq. (1), any given unknown input $y \in \mathbb{R}^m$ can be represented as a linear span of training sample matrix $A \in \mathbb{R}^{m \times n}$ as:

$$ y = x_1 a_{11} + x_2 a_{12} + \cdots + x_n a_{kn_k}, $$

where x_1, x_2, \ldots, x_n are a sparse set of weights.

Under this formulation, the class membership of y, which is encoded as the sparsest solution of the underdetermined system given in Eq. (1) can be found by solving Eq. (4).

C. Related Work

There are some existing research work on using sparse representation for human activity analysis. Yang et al. [18] used 8 motion sensing motes distributed on the human body to recognize 12 different human activities. Liu et al. [19] adopted a similar strategy to recognize human activities captured by
camera videos. Compared to these existing studies, our work differs in the following aspects:

1) Sensing technology: Instead of using video cameras [19], we use inertial sensors (accelerometer and gyroscope) attached on the body to collect human activity signals;

2) Sensing strategy: Rather than distributing multiple sensor nodes to cover the entire body as in [18], we use only one single sensor node on the body to recognize human activity. We believe this sensing strategy is less intrusive and can be applied to a much wider range of real-world applications;

3) Sensor location: The work in [18] requires that the sensor nodes are fixed in some specific locations. Any misplacement of the sensor nodes will make the recognition fail. In comparison, our method does not have this limitation and enables the co-recognition of human activity and sensor location in one single step.

A preliminary version of this work has appeared [20]. Compared to previous work, we include a further study and discussion of the algorithm performance in this paper. Specifically, there are two new contributions. First, we investigated algorithm robustness on feature dimension reduction. In this paper, we evaluate the algorithm robustness from two aspects: classification accuracy and classification stability. The detailed analysis of this part is addressed in Section IV-D. Second, we compared our algorithm with two most used classification methods, nearest neighbor (NN) and nearest subspace (NS), to justify its advantage. The comparison study includes three aspects: classification accuracy, classification stability and robustness on feature dimension reduction. The experimental results proved the advantage of our method and discussed the applicable conditions (see Section IV-F). Note that we use the same dataset on evaluation for the sake of consistency with previous work.

III. OUR FRAMEWORK

In this section, we present our proposed framework for co-recognizing human activity and on-body sensor location. As shown in Figure 2, our framework consists of three important components: feature extraction, sparse representation via \(\ell_1 \) minimization, and Bayesian sparse signal based classification. We will describe the details of all these components in this section.

A. Feature Extraction

There are many existing studies focusing on exploring the best features that can be extracted from human activity signals. Following previous work [21], we extract statistical features in motion signals, such as mean, standard deviation and nonnegative entropy, to represent human activities. These parameters index a family of probability distribution and describe the characteristics of a population. In this paper, we use 12 statistical features listed in Table I because they these features been proven to be useful in classifying human activities and other related pattern recognition problems by existing studies [22]. All these features are extracted from both accelerometer and gyroscope signals. In total, 64 features for each segment are extracted and denoted as \(x \in \mathbb{R}^{64} \). Also, note that every feature in the vector is independent of others.

B. Sparse Representation via \(\ell_1 \) Minimization

We follow the formulation described in Section II to construct the data matrix \(A \). Specifically, we collect \(n \) samples from activity \(i \) and sensor location \(j \). For each sample, we extract features described in the previous subsection to form a feature vector \(a \). Then a feature matrix \(A_{ij} \) can be constructed as:

\[
A_{ij} = [a_1, a_2, \cdots, a_n].
\]

In this way, we build the data matrix \(A \) covering all \(K \) activities and \(L \) locations as:

\[
A = [A_{11}, A_{12}, \cdots, A_{KL}].
\]

As described in Section II, any given test sample \(y \) from unknown activity and location can be represented in terms of the matrix \(A \) as

\[
y = A_{11}x_{11} + A_{12}x_{12} + \cdots + A_{KL}x_{KL},
\]

where \(x = [x_{11}, x_{12}, \cdots, x_{KL}] \) is the sparse representation of \(y \) w.r.t. matrix \(A \), and the coefficient \(x_{ij} \) is referred as feature index for feature matrix \(A_{ij} \). In such case, \(x \) can be found via the \(\ell_1 \) minimization formulated in Eq. (4).

C. Bayesian Sparse Signal Based Classification

Given the sparse representation \(x \) of the test sample \(y \), we can identify its activity class membership \(i \) and location class membership \(j \) altogether by computing the residual values between \(y \) and each feature matrix \(A_{ij} \) defined as:

\[
\text{residual}_{ij} = \|y - A_{ij}x_{ij}\|_2,
\]

the lower the residual value is, the more similar \(y \) is to feature matrix \(A_{ij} \). Therefore, \(y \) is classified as the activity class \(C \) and sensor location class \(S \) that produces the smallest residual:

\[
\{C, S\} = \text{arg min}_{ij} \text{residual}_{ij}.
\]

Let \(P(i, j|C, S) \) be the probability that the test sample \(y \) is classified as activity \(i \) and sensor location \(j \) when the true activity class is \(C \) and true sensor location class is \(S \). Since the residual value is a measure of the similarity between \(y \) and the feature matrix \(A_{ij} \), the lower the residual is, the higher the probability that the classified activity class \(i \) and location class \(j \) will be the same as the true activity class \(C \) and true location class \(S \). Therefore, we can model the probability \(P(i, j|C, S) \) using the residual values as:

\[
P(i, j|C, S) = 1 - \frac{\text{residual}_{ij}}{\sum_{i=1}^{K} \sum_{j=1}^{L} \text{residual}_{ij}}.
\]

Based on the sum rule of probability theory, the probability of \(y \) classified as activity \(i \) when the true activity class is \(C \)
can be derived by summing up the probability at each sensor location from

\[P(i|C) = 1 - \frac{\sum_{j=1}^{L} \text{residual}_{ij}}{\sum_{j=1}^{K} \sum_{i=1}^{L} \text{residual}_{ij}}, \quad (13) \]

and the test sample \(y \) is classified as activity class \(C^* \) that has the highest probability:

\[C^* = \arg \max_i P(i|C). \quad (14) \]

Similarly, the probability of \(y \) classified as location \(j \) when the true location class is \(S \) is calculated by summing up the probability over all activity classes from

\[P(j|S) = 1 - \frac{\sum_{i=1}^{K} \text{residual}_{ij}}{\sum_{i=1}^{K} \sum_{j=1}^{L} \text{residual}_{ij}}, \quad (15) \]

and the test sample \(y \) is classified as sensor location class \(S^* \) that has the highest probability

\[S^* = \arg \max_j P(j|S). \quad (16) \]

IV. Experiments and Evaluation

A. Experimental Setup and Dataset

We ran a pilot study in a laboratory environment to evaluate the performance of our proposed approach. The dataset is collected using an customized human motion sensing node, called a TelosB mote [23]. As shown in Figure 3, the size of the TelosB mote is 1.267 inch by 2.580 inch, and it includes a tri-axial accelerometer and a bi-axial gyroscope (i.e. five data channels). For each channel, the signal sampling rate is 50 Hz, and all the samples are stored in an on-board SD card.

We collected the data from 3 male subjects whose ages are 25, 28, and 33 respectively. Each subject performed 14 different activities including: 1) stand to sit ; 2) sit to stand ; 3) sit to lie ; 4) lie to sit ; 5) bend to grasp ; 6) rising from bending ; 7) kneeling right; 8) rising from kneeling; 9) look back; 10) return from look back; 11) turn clockwise; 12) step forward; 13) step backward; and 14) jumping. Meanwhile, the subjects were asked to wear the sensing device at 7 different locations during their performance. These locations are: a) waist; b) right wrist; c) left wrist; d) right arm; e) left thigh; f) right ankle; and g) left ankle. Therefore, we have 98 combinations of activity and sensor location in total. For each location, each subject performed each activity for 10 trials.

After data collection, we extract features listed in Table I from each data unit. Our sensor node has five data channels, and we can extract 64 features from each data unit.

B. Sparsity of Human Activity

Based on the discussion in Section II-A, sparse representation can perform accurate recognition and classification based on one important prerequisite: the representation \(x \) of \(y \) should be a sparse vector in the space spanned by the training samples \(A \). Unfortunately, few works prove the sparsity of their problems before using this principle, either theoretically or empirically. For the sake of avoiding blind decisions, we did the preliminary experiments to investigate the sparsity of human activities.
Without the loss of generality, we randomly selected 30 samples from a single activity, and each sample has 30 randomly selected features. In this way, we can form a sample matrix \(A_1 \in \mathbb{R}^{30 \times 30} \). We also built \(A_2 \in \mathbb{R}^{30 \times 30} \) with 3 human activities and \(A_3 \in \mathbb{R}^{30 \times 30} \) with 9 activities. Note that in all these sample matrices, column space consists of samples, and the row space is based on the features. Similar to [24], we generated a Gaussian random matrix \(G \in \mathbb{R}^{30 \times 30} \) and performed SVD [25] on \(A_1, A_2, A_3 \) and \(G \) respectively to evaluate the sparsity of human activity. All their singular value profiles are illustrated in Figure 4. It indicates that compared to \(G, A_1, A_2 \) and \(A_3 \) are low-rank since their SVD profiles have significant downtrend compared to \(G \). Knowing that all features are statistically independent (see Section III-A), low-rank should be caused by column space, which means that the sample space is overcomplete. This is an experimental indication that the training samples \(A \) are a sparse set. Specifically, comparing \(A_1 \) with \(A_2 \) and \(A_3 \), we can see that the sample space from the same activity class (i.e. \(A_1 \)) has a higher degree of sparsity.

TABLE II

<table>
<thead>
<tr>
<th>Classification Performance Evaluated by Three Metrics</th>
</tr>
</thead>
<tbody>
<tr>
<td>Activity&Location (%) Metric (1)</td>
</tr>
<tr>
<td>----------------------------------</td>
</tr>
<tr>
<td>Precision</td>
</tr>
<tr>
<td>Recall</td>
</tr>
</tbody>
</table>

To take a closer look at the classification results, Table III and IV show two confusion tables with respect to activity classification (metric (2)) and sensor location classification (metric (3)), respectively. In Table III, we notice that activity 7) kneeling right and activity 8) rising from kneeling are most often confused. Although these two activities are a pair of complementary processes and visibly different from each other in the time domain, our algorithm describes the human activity signal in a statistical way and removes the temporal information in the data. Therefore, complementary processes should share many features in the space domain. As for sensor location classification, as illustrated in Table IV, most precision and recall values are more than 98%. However, location e) Left Thigh and location f) Right Ankle are confused with each other the most. Specifically, the corresponding accuracy is around 92%. It indicates that the selected features described in Section III can not reliably distinguish the two cases. We could consider this issue to enhance the algorithm performance in future work.

C. Classification Performance Evaluation

For this part, we evaluate the classification performance of our framework. Our evaluation is based on three metrics: (1) the classification accuracy of co-recognition of activity and sensor location based on Eq. (11); (2) the classification accuracy of activity based on Eq. (14); and (3) the classification accuracy of sensor location based on Eq. (16). For evaluation, we adopt a 10-fold cross validation strategy. Specifically, we divide the whole dataset into 10 sets. At one time, 5 sets are used to build the data matrix \(A \) and the remaining 5 sets for testing. The whole procedure iterates 10 times.

There are two important aspects in algorithm evaluation. One is the classification accuracy. Given large number of testing inquiries, the algorithm should offer the correct responses with high probability. The other aspect is the classification stability. If the training and testing datasets are changed, the recognition result should vary slightly from the average rate.

Table II shows the evaluation results in terms of the above three metrics. As shown, metric (1) achieves an 87.42% precision value and an 87.93% recall value. For metric (2) and (3), it is interesting to see that with Bayesian fusion, the classification accuracy is improved. Specifically, for activity recognition, the precision and recall reach 88.79% and 89.21%. For location recognition, both the precision and the recall are higher than 96%. For **stability**, we observe that the standard deviation of metric (1) is as low as 1.26% (the mean of precision and recall variation). After Bayesian fusion, both metric (2) and metric (3) have better robustness. As shown in Table II, the variation of metric (2) is 1.25% and 1.02% for precision and recall variation. For metric (3), the variation is always less than 0.5% in general.

D. Robustness on Feature Dimension Reduction

In this experiment, we investigate the impact of feature dimension on performance of our framework. As mentioned before, in total we extract 64 features. We start from 60 features and reduce the number of features by the decrement 5. Figure 5 shows the averaged misclassification rates for each feature dimension in terms of the three classification metrics. We can see that the misclassification rate of co-recognition increases from 13% to 39% while the feature dimension decreasing from 64 to 30. Furthermore, it indicates that 55 is the significant turning point, where the misclassification rates increase greatly (more than 10%) when the feature dimension is less than 55 (from 55 to 50).
TABLE III
CONFUSION TABLE OF RECOGNITION ON 14 HUMAN ACTIVITIES

<table>
<thead>
<tr>
<th>Feature Dimension</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
<th>14</th>
<th>Total</th>
<th>Recall</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
<td>11</td>
<td>12</td>
<td>13</td>
<td>14</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
<td>11</td>
<td>12</td>
<td>13</td>
<td>14</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
<td>11</td>
<td>12</td>
<td>13</td>
<td>14</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
<td>11</td>
<td>12</td>
<td>13</td>
<td>14</td>
<td>15</td>
<td></td>
</tr>
</tbody>
</table>

In addition to the classification accuracy (see Fig. 5), we also examined the classification stability of our framework with feature dimension. For simplicity of the presentation, we investigated the performance on co-recognition of human activity and sensor location (metric (1)). As shown in Fig. 6 (the blue error bar), we observe the variation of the misclassification rate also increases with a decrease of the number of features. This implies that the feature number has significant impact not only on the classification accuracy, but on the classification stability. Specifically, the variation increases to 5% when the feature number drops to 35.

More specifically, to examine the robustness of our framework in terms of different features, we randomly selected 55 features out of 64 as an example and evaluated the framework for 10 times. Table V shows the results. As shown, it is interesting to see that our compressed sensing-based framework is not sensitive to the specific features selected, with the standard deviation of the performance less than 1.41% for all cases.

E. Comparison Between ℓ_1 and ℓ_2

As stated in Section II, ℓ_1 is a better heuristic for sparsity optimization than ℓ_2. In this section, we empirically validate
this point and compare the classification performance between \(\ell_1 \) and \(\ell_2 \) optimization strategies. As an example, Figure 7 shows the solutions from both \(\ell_1 \) and \(\ell_2 \) optimization with one test sample from activity 7 (kneeling right) at location \(d \) (right arm). As illustrated, the solution from \(\ell_1 \) is quite sparse has few significantly large components. Moreover, the maximal spike marked by the red circle is associated with the training samples belonging to the same activity class and sensor location class. In comparison, the solution from \(\ell_2 \) has few significant components and many small components. The spikes are dense and distributed over all activity and sensor location classes (see Figure 7).

For clarity of the presentation, we augment this result in the residual computation. Figure 8 illustrates the corresponding residual values between the test sample and all 98 classes defined by Eq. (10) for both \(\ell_1 \) and \(\ell_2 \). As shown in the figure, the class membership of the test sample can be easily found by the minimal residual (pointed by the red arrow) for the \(\ell_1 \) optimization strategy. For \(\ell_2 \), although the minimal residual also corresponds to the true class, the difference between the minimal residual and the residual values of other classes is not significant in this example.

![Residuals of \(\ell_1 \) and \(\ell_2 \) Optimization Strategies](image)

Fig. 8. Residuals of 98 Classes of \(\ell_1 \) and \(\ell_2 \) Optimization Strategies

Next, we compare the classification performance between \(\ell_1 \) and \(\ell_2 \). Table VI shows the results in terms of the recognition rates. As shown, \(\ell_1 \) outperforms \(\ell_2 \) across all three metrics consistently in terms of both recognition accuracy and stability. It is worth emphasizing that the enhancement from \(\ell_1 \) compared to \(\ell_2 \) has stronger scalability: the larger the scale, the greater is the benefit. Based on the indication in Figure 7, it is not surprising that \(\ell_1 \) outperforms \(\ell_2 \) overwhelmingly in terms of both accuracy and stability. Specifically, the co-recognition classification accuracy could be improved by 20.75% with \(\ell_1 \) optimization. Correspondingly, the gain of stability from \(\ell_1 \) optimization is 3.17X on average.

F. Sparse Representation (SR) Based Classifier v.s. Two Classical Methods

As a last experiment, we show the advantage of our method with respect to different feature dimensions compared to two classical classification methods: Nearest-Neighbor (NN) based classifier [26] and Nearest-Subspace (NS) based Classifier [27]. For simplicity of the presentation, we only show the results on classification accuracy (the mean of precision and recall) here. Figure 9 illustrates the average classification accuracy rates as a function of feature dimension. Each curve represents one classification method respectively. Similar to Section IV-D, features at each dimension are sequentially selected, and the performance is based on the average.

As shown in the figure, all methods have better performance with feature dimension scaling-up. We can see that the performance of NN and NS are close, which follow the similar trend, and the SR-based classifier is different from them. More specifically, when the feature dimension is less than 40, NN and NS are better than SR; when the feature dimension is more than 40, the SR-based classifier outperforms the other two methods. This observation indicates that using only 40 features is not sufficient to recover the human activity signal via \(\ell_1 \) minimization. However, when the feature dimension is equal or more than 45, the SR-based method can achieve a steady
performance and beats the other two classical classification methods, achieving a maximum recognition rate of 87.72%.

V. CONCLUSION

Inspired by the sparsity of human activity signals, we adopted and described a sparse signal representation technique to co-recognize human activity and sensor location in wearable sensor networks. The experimental results showed that our method can achieve greater than 87% recognition accuracy with 14 different activities and 7 on-body locations. We also showed that using the ℓ_1 norm is better than the ℓ_2 norm in terms of both accuracy and stability. Moreover, we compared a SR-based framework to two classical methods, NN-based method and NS-based method, respectively. The results showed that SR outperforms both of them when feature dimension is more than a threshold. Considering the promising results in the pilot study, we intend to run additional experiments with a larger-scale group and evaluate more activities and sensor location in future work.

ACKNOWLEDGEMENT

The authors would like to thank Dr. Roozbeh Jafari, director of ESSP Lab in University of Texas at Dallas and Dr. Hassan Ghasemzadeh of Wireless Health Institute in UCLA for the experimental equipments, dataset and discussion.

REFERENCES

Wenyao Xu (Student Member, IEEE) received his B.S. and M.S. degree in Electrical Engineering Department from Zhejiang University, Hangzhou, China in 2006 and 2008 respectively. From 2008, he started his graduate study at the department of Electrical Engineering and Computer Sciences of the University of California at Los Angeles, and is currently working towards the Ph.D. degree. His research interest is embedded system design and data analysis, and its applications include ubiquitous health monitoring system, smart grid and power management system. He won the Best Demonstration Award in ACM Wireless Health Conference in 2011.

Mi Zhang (Student Member, IEEE) received the B.S. degree in Electrical Engineering with a minor in Computer Science as a Distinguished Honor Graduate from Peking University, Beijing, China, in 2006. He is currently a Ph.D. candidate in Electrical Engineering at the University of Southern California (USC), Los Angeles, CA. His primary research interests include wearable sensing system design, machine learning, ubiquitous and mobile computing, and their applications in personal healthcare and medical applications.

Alexander A. Sawchuk (IEEE Fellow) received the S.B. degree in electrical engineering from the Massachusetts Institute of Technology, Cambridge, MA, and the M.S. and Ph.D. degrees in electrical engineering from Stanford University, Stanford, CA. He is Leonard Silverman Chair Professor in the Ming Hsieh Department of Electrical Engineering at the University of Southern California, and Systems Chair of the Department. He is also Associate Director of the Signal and Image Processing Institute (SIPI). He has served in the past as Director of the Signal and Image Processing Institute, and as Deputy Director of the Integrated Media Systems Center (IMSC). His research interests include the use of optoelectronic devices and systems for parallel optical computing, interconnection, network and data storage applications. Other interests include: image processing, immersive media technology, stereo and panoramic video and displays; wireless health, body area networks, multimodal sensing and pattern recognition. He is the holder of two U.S. Patents and is the author or co-author of more than 280 technical publications in these fields. He is a Fellow of the Optical Society of America (OSA) and the International Society for Optical Engineering (SPIE). He received the USC Associates Award for Excellence in Teaching, the OSA Distinguished Service Award and USC Mellon Academic Mentoring Support Program Certificate of Recognition. He also received the Halliburton Award for Exceptional Service, the Lockheed Senior Research Award, and the Outstanding Teaching Award from the USC Viterbi School of Engineering. He has served often in various offices and on technical committees for IEEE, OSA and for SPIE. He was Associate Editor for the OSA journal Optics Letters, and was Editor of the Information Processing Division of Applied Optics.

Majid Sarrafzadeh (IEEE Fellow) received his Ph.D. in 1987 from the University of Illinois at Urbana-Champaign in Electrical and Computer Engineering. He joined Northwestern University as an Assistant Professor in 1987. In 2000, he joined the Computer Science Department at University of California at Los Angeles (UCLA). He is currently a co-director of the UCLA Wireless Health Institute where he has a few dozen active project with medical doctors and nurses around the world. His recent research interests lie in the area of Embedded and Reconfigurable Computing with emphasis on healthcare. Dr. Sarrafzadeh is a Fellow of IEEE. He has served on the technical program committee of numerous conferences and been a general chair of many of them. Professor Sarrafzadeh has published approximately 400 papers, co-authored 5 books, and is a named inventor on many US patents. Dr. Sarrafzadeh has collaborated with many industries in the past 25 years industries and was the architect of Monterey Design Systems - Synopsys acquired the company. He was a co-founder of Hier Design, Inc. Hier Design was acquired by Xilinx in 2004. He has recently co-founded Medisens and BioAssyst: both companies in the area of Wireless Health.