Introduction

- Metric learning is insufficient for modeling similarity
 - Focus on a subset of features

Non-metric similarity is common

- Human perception of face [1]
- “Multiplex” social networks [2]
- Links are formed for different reasons: same school, religion, zip code, hobbies, political views, etc.

- Multiplicative combination of latent components
- Leads to tractable inference
- Yields sparse solutions

Learning latent similarities

- Model non-metric and noisy similarity values
- “Localized” metrics focus on the relevant subset of features

Proposed Approach

- Latent components
 - Focus on a subset of features
 - Localized similarity values

- Combining latent components
 - Multiplicatively combine with OR gate

- Marginalize out all latent components

Inference and Learning

- Tractable posterior over latent variables S_k
- EM algorithm
 - Learning each component independently in M step
 - Each component is fit analogously as a softly labeled logistic regression

Experiments

- Synthetic data
 - True and recovered metrics ($K = 5$)
 - Similarity prediction accuracies

- Link prediction on a network of NIPS proceedings
 - Compare to discriminative methods (SVM, LMNN[3], ITML[4]) for different features and K.

Highlights

- Learning latent similarities
 - Model non-metric and noisy similarity values
 - “Localized” metrics focus on the relevant subset of features
- Multiplicative combination of latent components
 - Leads to tractable inference
 - Yields sparse solutions

References