Assessment of Segmental Myocardial Blood Flow and Myocardial Perfusion Reserve by Adenosine-Stress Myocardial Arterial Spin Labeling Perfusion Imaging

Andrew J. Yoon, MD,1* Hung Phi Do, PhD,2 Steven Cen, PhD,3 Michael W. Fong, MD,1 Farhood Saremi, MD,1 Mark L. Barr, MD,4 and Krishna S. Nayak, PhD5

Purpose: To determine the feasibility of measuring increases in myocardial blood flow (MBF) and myocardial perfusion reserve (MPR) on a per-segment basis using arterial spin labeled (ASL) magnetic resonance imaging (MRI) with adenosine vasodilator stress in normal human myocardium.

Materials and Methods: Myocardial ASL scans at rest and during adenosine infusion were incorporated into a routine 3T MR adenosine-induced vasodilator stress protocol and were performed in 10 healthy human volunteers. Myocardial ASL was performed using single-gated flow-sensitive alternating inversion recovery (FAIR) tagging and balanced steady-state free precession (bSSFP) imaging at 3T. A T_2-prep blood oxygen level-dependent (BOLD) SSFP sequence was used to concurrently assess segmental myocardial oxygenation with BOLD signal intensity (SI) percent change in the same subjects.

Results: There was a statistically significant difference between MBF measured by ASL at rest (1.75 ± 0.86 ml/g/min) compared to adenosine stress (4.58 ± 2.14 ml/g/min) for all wall segments ($P < 0.0001$), yielding a per-segment MPR of 3.02 ± 1.51. When wall segments were divided into specific segmental myocardial perfusion territories (ie, anteroseptal, anterior, anterolateral, inferolateral, inferior, and inferoseptal), the differences between rest and stress regional MBF for each territory remained consistently statistically significant ($P < 0.001$) after correcting for multiple comparisons.

Conclusion: This study demonstrates the feasibility of measuring MBF and MPR on a segmental basis by single-gated cardiac ASL in normal volunteers. Second, this study demonstrates the feasibility of performing the ASL sequence and T_2-prepared SSFP BOLD imaging during a single adenosine infusion.

Level of Evidence: 2.

MYOCARDIAL PERFUSION and myocardial perfusion reserve are important measures used for the diagnosis and risk-stratification of patients with coronary artery disease (CAD).1,2 First-pass perfusion magnetic resonance imaging (MRI) has improved sensitivity and specificity compared to SPECT perfusion imaging,3 but requires the use of gadolinium-based contrast agents that are potentially toxic to patients with renal dysfunction.4 Arterial spin labeling (ASL) is a quantitative, noncontrast MRI technique that uses blood itself as the signal tracer to measure tissue perfusion, and can be safely applied to patients repeatedly.5

ASL is most commonly used in the brain for the clinical quantification of cerebral blood flow in cerebrovascular disease and neuro-oncology,5–7 but much work has been done over the past decade to adapt and develop ASL for use in the quantification of blood flow in other organs,
including myocardial blood flow (MBF) in both animal and human models. Myocardial ASL is compatible with pharmacological stress testing and is able to detect clinically relevant increases in MBF with vasodilation, making it a potential diagnostic tool for the detection of ischemic heart disease.

Myocardial ischemia occurs when there is an imbalance between myocardial oxygen supply and myocardial metabolic oxygen demand, and is usually caused by CAD. The measurement of coronary sinus oxygen saturation has been used to detect global myocardial deoxygenation, but this method is invasive, time-consuming, and impractical for serial measurements over time. Deoxyhemoglobin is paramagnetic, and blood oxygen level-dependent (BOLD) MRI can detect elevated deoxyhemoglobin levels in myocardial territories located downstream from stenotic coronary arteries. Because ischemia is the initiator for the ischemic cascade, BOLD imaging may prove sensitive for the detection of CAD. Thus, the noninvasive measurement of myocardial deoxygenation with BOLD MRI may be a useful complement to existing MRI perfusion techniques.

In this study we performed the cardiac ASL method in healthy volunteers at both rest and stress using adenosine vasodilation, and we report MBF and MPR on both a global and per-segment basis. We also used a reference protocol was Institutional Review Board-approved, and written informed consent was obtained from all subjects.

All scans were performed on a 3T system (Signa Excite HDxt, GE Healthcare, Milwaukee, WI) using an 8-channel cardiac array. A localization scan was performed first, followed by steady state free precession (SSFP) long-axis and short-axis scans of the left ventricle to verify normal cardiac anatomy and function. A short axis slice at the mid-ventricular level was identified, and a baseline image without the flow-sensitive inversion recovery (FAIR) labeling pulse was acquired to ensure the slice was properly prescribed without banding artifacts over the myocardium. If banding artifacts were present on the myocardium, a frequency scout scan was performed. The offset frequency that resulted in no banding artifacts over the myocardium was set to this value minus 200 msec to account for circulation time from the R-wave to the fingertip. The center of the acquisition window was set to occur one heartbeat (TI = 1RR) after the FAIR labeling pulse. Control and labeled images were acquired in the same breath-hold. Sequence parameters for single-gated myocardial ASL include echo time (TE) = 1.4 (1.3–1.5) msec, repetition time (TR) = 3.2 (3.0–3.5) msec, flip angle 50°, slice thickness = 10 mm, field of view 210 (160–260) mm, matrix size = 96 × 96 with parallel imaging GRAPPA rate 1.6, and 19-TR ramp-up and ramp-down pulses weighted by Kaiser–Bessel window were used to optimally minimize transient artifact and preserve longitudinal magnetization after image acquisition, respectively. A fat-saturation pulse was applied immediately before the ramp-up pulses. A nonselective hyperbolic secant adiabatic inversion pulse was used for labeling. A 30 mm slice-selective inversion slab was used for the control image.

The BOLD scan was performed using a 50 msec adiabatic T2-prep and bSSFP image acquisition with the same sequence parameters as the ASL scan, using the same mid-ventricular level short axis slice. The BOLD scan consisted of two breathholds of ~13 seconds each. In each breath-hold, three T2-prep bSSFP images were acquired with a 5-second time gap between images, resulting in a total of six averages for each BOLD scan.

After rest images were acquired, adenosine infusion was initiated at 140 mcg/kg/min for a total duration of 6 minutes. Stress imaging was started exactly 2 minutes after adenosine infusion was initiated, with ASL and BOLD scans performed sequentially in randomized order. A cardiologist was present to supervise all studies. Of 10 healthy subjects, one subject requested premature study termination due to claustrophobia before rest images were acquired, and one subject was unable to perform breath-holds during adenosine infusion, leaving eight complete rest and stress datasets for study analysis. Total scan time for completion of all stress ASL and BOLD scans was less than 3 minutes in all subjects.

Data Analysis
MBF was calculated in the same way as previously described, All data processing was performed in MatLab (MathWorks, Natick, MA). After image reconstruction, the myocardium was manually segmented and resampled into polar coordinates using a spatiotemporal averaging filter. MBF quantification was derived from Buxton's general kinetic model:

\[
MBF = \frac{C - L}{2 \cdot B \cdot TI \cdot \exp(-TI/T1)}
\]

where C, L, and B refer to the mean myocardial signal in the control, labeled, and baseline images, TI represents the postlabeling
delay time and was equal to the R-R interval, and T_1 is the longitudinal relaxation time of blood, which was assumed to be 1650 msec.34 MPR was defined as the ratio of MBF\textsubscript{stress} to MBF\textsubscript{rest}.

The size of the spatial filter and the number of resampled segments could be freely chosen. Global MBF quantification was performed with a filter size of $\pi/3$ and a single segment while a filter size of $\pi/3$ was used for per-segment analysis. Per-segment analysis was also performed for each subject. Each midventricular short-axis image was divided into six equiangular segments (infero-septal, antero-septal, anterior, anterolateral, inferolateral, and inferior) according to the middle-slice six segments of the American Heart Association 17-segment model.27 Physiologic noise (PN) is a measure of the variability of measured MBF, and is measured in ml/g/min. PN is defined as the standard deviation (SD) of six repeated MBF measurements as described in Zun et al,19 and represents all sources of variation in ASL measurements including methodological variability, short-term biological fluctuation, as well as cardiac and respiratory motion. Temporal SNR, defined as MBF/PN, was also calculated.

BOLD signal intensity (SI) index was calculated in the same way previously described35 as the following equation:

$$\Delta SI(\%) = 100 \cdot \frac{SI\textsubscript{stress} - SI\textsubscript{rest}}{SI\textsubscript{rest}},$$

where $SI\textsubscript{stress}$ and $SI\textsubscript{rest}$ are mean myocardial signal intensity at rest and stress, respectively. No segments were excluded from BOLD SI index analysis.

Statistical Analysis

Data normality was assessed using scatterplot and the Anderson–Darling test. Since the data were skewed, nonparametric data analyses were used. For global MBF change, the Wilcoxon signed rank test was used to assess the increase in MBF with adenosine. For segmental analysis, the data were first transformed into Wilcoxon ranking score, then the random effect model was used to assess intra- (increase within segment) and intersegment (either rest or stress between segments) variations for both MBF and PN. A significant interaction between segment and phase will indicate a change from rest to stress varied across segments; otherwise, a non-significant interaction will indicate the change from rest to stress being consistent across segments. Post-hoc comparisons across segments were conducted using the Kruskal–Wallis test, and between rest and stress for individual segments using Wilcoxon signed rank tests. Since eight post-hoc tests were conducted, an alpha level of 0.006 was used based on Bonferroni correction. Spearman correlation was used to compare BOLD SI % change to MPR, on both a per-segment and global basis. SAS 9.4 (Cary, NC) was used for all data analysis.

RESULTS

Study subjects consisted of five males and three females, age 23–34 years (Table 1). Figure 1 shows global MBF measurements at rest (blue) and stress (red) for each subject. Each bar represents the average MBF across the whole myocardium in the mid-ventricular slice. Error bars represent PN, which is one SD of measured MBF. The mean and SD of PN across all subjects was 0.19 ± 0.15 ml/g/min at rest and 0.52 ± 0.27 ml/g/min at stress. Global PN was $11 \pm 7\%$ and $12 \pm 6\%$ relative to the mean MBF at rest and stress, respectively. The average heart rate increased by 66% from 64 beats/min at rest to 97 beats/min during adenosine infusion.

The mean and SD of global MBF across all subjects was 1.64 ± 0.60 ml/g/min at rest and 4.45 ± 1.81 ml/g/min at stress, yielding an average MPR ($MBF\textsubscript{stress}/MBF\textsubscript{rest}$) of 2.72 ± 0.47. Figure 2 shows MPR for each subject. On the basis of a Wilcoxon Signed Rank test, the MBF increase with adenosine was statistically significant ($P < 0.001$). The measured global MBF range was 1.10–2.89 ml/g/min at rest and 2.75–8.26 ml/g/min at stress.

TABLE 1. Study Subject Baseline Characteristics

<table>
<thead>
<tr>
<th>Subject</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>Mean ± SD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age/sex</td>
<td>26 F</td>
<td>27 F</td>
<td>34 M</td>
<td>33 M</td>
<td>30 F</td>
<td>32 M</td>
<td>23 M</td>
<td>26 M</td>
<td>(Age) 28 ± 4</td>
</tr>
<tr>
<td>Systolic BP</td>
<td>110</td>
<td>121</td>
<td>118</td>
<td>114</td>
<td>107</td>
<td>132</td>
<td>129</td>
<td>126</td>
<td>120 ± 9</td>
</tr>
<tr>
<td>Diastolic BP</td>
<td>50</td>
<td>75</td>
<td>65</td>
<td>53</td>
<td>62</td>
<td>82</td>
<td>81</td>
<td>74</td>
<td>68 ± 12</td>
</tr>
<tr>
<td>Heart rate</td>
<td>46</td>
<td>73</td>
<td>81</td>
<td>74</td>
<td>84</td>
<td>78</td>
<td>66</td>
<td>71</td>
<td>72 ± 12</td>
</tr>
</tbody>
</table>

M = male; F = female; SD = standard deviation; BP = blood pressure.
Per-segment analysis was performed for each segment (Fig. 3). Of 96 total left ventricle (LV) wall segments, five were excluded from per-segment analysis due to temporal signal-to-noise (tSNR) ratio <2. All five of these excluded segments were from rest ASL images; no stress ASL segments were excluded on the basis of tSNR. Three of the excluded segments were from one volunteer; the other two excluded segments were from different individuals. All five excluded segments were from different segment locations, with only the anterolateral wall having a per-segment rest and stress tSNR >2 in all subjects. Mean tSNR was similar at rest and stress with no significant per-segment differences (data not shown). The mean and SD for per-segment MBF was 1.75 ± 0.86 ml/g/min at rest and 4.58 ± 2.14 ml/g/min at stress (P < 0.0001), yielding a mean MPR of 3.02 ± 1.51 for all wall segments. The mean and SD for per-segment PN was 0.28 ± 0.20 ml/g/min at rest and 0.82 ± 0.58 ml/g/min at stress (P < 0.0001).

Figure 4 shows boxplots for MBF per specific LV wall segment (anteroseptal, anterior, anterolateral, inferolateral, inferior, and inferoseptal) at both rest and stress. On the basis of a Wilcoxon signed rank test, the MBF increase with adenosine was statistically significant (P < 0.001) for every LV wall segment. MPR for each wall segment (as well as rest and stress MBF) are summarized in Table 2.

There was no significant interaction found from mixed model for MBF (P = 0.75) and PN (P = 0.12). The post-hoc one-way Kruskal–Wallis tests were not statistically significant across segments for either rest (P = 0.99) or stress (P = 0.67) MBF, and rest (P = 0.48) or stress (P = 0.3) PN. The nonstatistically significant interaction test indicated the magnitudes of change from rest to stress were consistent across segments. Further pairwise tests for the difference from rest to stress were shown to be consistently significant for all segments using the Bonferroni corrected alpha level of 0.006.

The mean and SD of global BOLD SI change across all subjects was 14.23 ± 8.26%. The mean increase in per-segment BOLD SI index was 16.93 ± 7.88%. Spearman correlation was performed to compare BOLD SI change to MPR on both a segmental and global basis. No significant correlations were found (P = NS for all comparisons).

DISCUSSION

This study demonstrates the feasibility of measuring MBF and MPR on a per-segment basis by single-gated cardiac ASL. Second, this study demonstrates the feasibility of performing the ASL sequence and T2-prepared SSFP BOLD imaging during a single adenosine infusion. There was a statistically significant increase in global MBF measurements with adenosine infusion (4.45 ± 1.80 ml/g/min) compared with rest (1.69 ± 0.59 ml/g/min), as expected for healthy volunteers, with a measured MPR of 2.75 ± 0.45. Of note, the mean stress and rest ASL MBF measurements in our study are higher than previously published results for global stress (3.67 ± 1.36 ml/g/min) and rest (0.97 ± 0.64 ml/g/min) ASL MBF, which likely reflect patient population differences since the "normal" volunteers in the previous study had a mean age of 64 ± 12 years with an average of 46 years.
3.4 cardiovascular risk factors. Our findings also correlate with oxygen-15 positron emission tomography (PET) literature MBF values in normal individuals of $1.24 \pm 0.19 \text{ ml/g/min}$ at rest, 3.37 ± 1.25 to $5.05 \pm 0.90 \text{ ml/g/min}$ at stress. 37 Our derived measurements of global MPR in normal volunteers are consistent with previously published values in both the PET $38–41$ and ASL literature. 22

Furthermore, we extended on these earlier findings by reporting MBF and MPR on a per-segment basis, which is a necessary step to assess the clinical utility of cardiac ASL. Our results show differences in mean resting and stress perfusion among the various segments. For instance, one might anticipate that all healthy myocardial segments would have the same perfusion, whereas our study shows a stress anterior perfusion of 5.15 ml/g/min versus a stress inferoseptal perfusion of 3.6 ml/g/min. However, these segmental perfusion heterogeneities are also observed in the PET literature, 42 and may be explained by physiological factors such as differences in arterial transit time between the coronary branches, as well as cardiac and respiratory motion. Other nonphysiological factors, such as partial volume effects (contamination from ventricular blood pools) and off-resonance B_1-transmit inhomogeneity, may also be involved, although these effects are likely minimal. This study was not designed to investigate the diagnostic performance of cardiac ASL, but the per-segment results for MBF and MPR in our normal volunteers are consistent with normal values in the reported PET literature. $37,42,43$

Additionally, our derived

![Boxplots for rest MBF, stress MBF, and BOLD SI % change per specific LV wall segment (anteroseptal, anterior, anterolateral, inferolateral, inferior, and inferoseptal) (horizontal line = mean; + = median; box = 25th and 75th percentile; error bars = maximum and minimum data points). On the basis of a Wilcoxon signed rank test, the MBF increase with adenosine was statistically significant ($P < 0.001$) for all LV wall segments. Left Y-axis = myocardial blood flow in ml/g/min. Right Y-axis = BOLD SI % change.](image)

TABLE 2. Per-segment MBF, MPR, and BOLD SI Change

<table>
<thead>
<tr>
<th>LV wall segment</th>
<th>Rest MBF (ml/g/min)</th>
<th>Rest PN</th>
<th>Stress MBF (ml/g/min)</th>
<th>Stress PN</th>
<th>MPR</th>
<th>BOLD SI change (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Global</td>
<td>1.64 ± 0.60</td>
<td>0.19 ± 0.15</td>
<td>4.45 ± 1.81</td>
<td>0.52 ± 0.27</td>
<td>2.72 ± 0.47</td>
<td>14.23 ± 8.26</td>
</tr>
<tr>
<td>Anteroseptal</td>
<td>1.95 ± 1.11</td>
<td>0.29 ± 0.19</td>
<td>4.13 ± 1.46</td>
<td>0.75 ± 0.53</td>
<td>2.48 ± 0.51</td>
<td>12.97 ± 6.40</td>
</tr>
<tr>
<td>Anterior</td>
<td>1.55 ± 1.24</td>
<td>0.32 ± 0.25</td>
<td>5.15 ± 2.13</td>
<td>0.69 ± 0.33</td>
<td>4.44 ± 1.86</td>
<td>19.09 ± 14.88</td>
</tr>
<tr>
<td>Anterolateral</td>
<td>1.66 ± 0.74</td>
<td>0.31 ± 0.24</td>
<td>4.92 ± 1.91</td>
<td>0.85 ± 0.43</td>
<td>3.64 ± 1.90</td>
<td>23.06 ± 15.93</td>
</tr>
<tr>
<td>Inferolateral</td>
<td>2.18 ± 0.84</td>
<td>0.34 ± 0.19</td>
<td>5.58 ± 3.24</td>
<td>1.12 ± 0.64</td>
<td>4.06 ± 3.62</td>
<td>16.72 ± 13.12</td>
</tr>
<tr>
<td>Inferior</td>
<td>1.61 ± 0.76</td>
<td>0.20 ± 0.18</td>
<td>4.09 ± 1.98</td>
<td>0.63 ± 0.41</td>
<td>2.64 ± 0.84</td>
<td>10.09 ± 9.93</td>
</tr>
<tr>
<td>Inferoseptal</td>
<td>1.55 ± 0.34</td>
<td>0.19 ± 0.10</td>
<td>3.60 ± 1.65</td>
<td>0.94 ± 0.95</td>
<td>2.96 ± 2.25</td>
<td>8.86 ± 4.01</td>
</tr>
</tbody>
</table>

Values are reported as mean ± SD across subjects. All MBF changes from rest to stress are statistically significant based on an alpha level of 0.006 after Bonferroni correction. MBF = myocardial blood flow; MPR = myocardial perfusion reserve; BOLD SI = blood oxygen level-dependent signal intensity; LV = left ventricular; SD = standard deviation.
measurement for per-segment BOLD SI change was 16.93 ± 7.88%, which is similar to previously reported values of 12.0 ± 11.3% (44) and 17.02% (35) in normal human subjects.

BOLD SI change did not significantly correlate with MPR in this study on either a global or segmental basis, even though the positive magnitude of MPR and BOLD SI % change seen globally and across myocardial segments in our study population are consistent with normal endothelial function and myocardial oxygenation in all test subjects. Likely reasons for this include the small sample size as well as the absence of a comparative disease-state arm. Further research will be required to validate the combined ASL-BOLD MRI methodology in a larger, mixed population including both normal and CAD patients.

Myocardial ischemia exists when there is an imbalance between myocardial oxygen supply and myocardial metabolic oxygen demand, and is usually caused by CAD. However, the correlation between myocardial ischemia and epicardial CAD, while strong, can also be nuanced. MPR is a measure of coronary endothelial vasoreactivity, while the causes of BOLD SI change are multifactorial and reflect blood flow, blood volume, and hemoglobin deoxygenation on a microvascular level. Uncoupling between MPR and BOLD SI change can occur in a variety of clinically relevant conditions. Normal stress perfusion can be accompanied by reduced stress oxygenation, as in patients with severe hypertension or left ventricular hypertrophy.45,46 Conversely, impaired stress perfusion can occur with normal oxygenation when myocardial oxygen demand is downregulated, as in myocardial hibernation.47

Studies comparing BOLD MRI to either MRI or PET perfusion have shown that there are occasionally mismatches between deoxygenated myocardial territories and hypoperfused myocardial wall segments.35,44 Myocardial autoregulation, adenosine triphosphate (ATP) usage, and myocardial blood volume have been proposed as possible etiologies for these observed deoxygenation-perfusion discrepancies. It is conceivable that the addition of oxygenation assessment to rest–stress perfusion protocols will enhance in the identification of physiologically significant coronary artery stenoses as well as the aforementioned clinically relevant conditions. However, it would be clinically laborious to perform PET perfusion imaging followed by BOLD MRI in the practice setting, as this would subject patients to considerable time and financial commitments in addition to the inconvenience of undergoing two sequential vasodilator stress tests, unless there is widespread clinical adoption of combined PET-MRI systems in the future. Several studies have shown correlation between MRI-derived MBF using gadolinium first-pass perfusion with BOLD MRI.44,48,49 However, given real concerns over gadolinium exposure, neural gadolinium retention, and nephrogenic systemic fibrosis,4 there is a clear clinical need for a contrast-free MR alternative. ASL MRI is a noninvasive MR technique that is capable of detecting clinically relevant changes in both MBF and MPR21 and is free from gadolinium and radiation exposure. Although this study only included normal volunteers, the incorporation of BOLD MRI with cardiac ASL in a single rest–stress study protocol is technically and clinically feasible and worthy of further investigation and validation.

The study has several limitations. Only a small number of healthy subjects were recruited. Systematic evaluations of cardiac ASL on a larger cohort including patients with CAD are warranted for future study. There was no ground truth for MBF in this study. First-pass MRI and PET perfusion imaging may be used for comparison but were not available in this healthy volunteer cohort, but will be required in the future to validate ASL-derived estimates of both MBF and MPR. Current implementations of myocardial ASL suffer from greater noise and lower spatial resolution than state-of-the-art first-pass MRI, but these are not fundamental limitations of the ASL approach and are currently under investigation.17,28 Another limitation of the current study is that we only used a single midventricular short-axis slice for imaging. Further technical innovations of the ASL technique, including the use of saturation labeling instead of inversion for the labeling pulse, may allow for complete data acquisition within two breath-holds instead of seven breath-holds, potentially allowing for whole-heart multislice acquisition with preserved SNR without sacrificing scan time. These and other similar efforts are currently under investigation.

In conclusion, this study demonstrates the feasibility of measuring MBF and MPR on a segmental basis by single-gated cardiac ASL. Second, this study demonstrates the feasibility of performing the ASL sequence and *T*₂-prepared SSFP BOLD imaging during a single adenosine infusion. This is expected to be valuable for the clinical applicability of cardiac ASL stress testing under pharmacologic stress.

ACKNOWLEDGMENTS

Contract grant sponsor: L.K. Whittier Foundation; contract grant number: 0003457-00001

REFERENCES

