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Abstract

In this paper we will examine the wavelet transform, one of the most recent
mathematical tools related to signal representation and illustrate it’s appli-
cation in the field of image compression. The paper is divided in two main
parts. In the first one we present the mathematical principles of multireso-
lution analysis, we illustrate them using the Haar wavelet in the one dimen-
sional case, we present the transform algorithms and we end up discussing a
number of more advanced topics. The second part starts by describing the
transition to the discrete case and then presents in a step by step manner
the general procedure for image compression using wavelets. There are four
basic steps: applying the wavelet transform, threshold detection, quantizing
and encoding the resulting data and finally applying an inverse transform.
These theoretical aspects are illustrated through a MATLAB project which
we developed using the Stanford University’s Wavelab toolbox.
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1 Wavelets

1.1 Principles of multiresolution analysis

We define a multiresolution analysis as a mathematical object consisting of
the following:

• (a) A bilateral sequence of closed subspaces Vj of L2 ordered by inclu-
sion:

. . . ⊂ V2 ⊂ V1 ⊂ V0 ⊂ V−1 ⊂ . . . ⊂ Vj ⊂ Vj−1 ⊂ . . . ⊂ L2 (1)

and obeying to the following axioms:⋂
j

Vj = 0 (separation axiom) (2)

⋃
j

Vj = L2 (completeness axiom) (3)

• (b) A scaling property of the Vj subspaces:

Vj = D2(Vj) ∀j ∈ Z where (4)

D2(f) =
n∑

k=0

hk ∗ f(t− k) (5)

or: f ∈ Vj ⇐⇒ f(2·) ∈ Vj−1.

• (c) There exists a function φ ∈ L2
⋂
L1 such that its translates ( φ(· − k)k ∈ Z )

form an orthonormal basis of V0. The function φ is called the scaling
function. We notice that the space V0 uses one such basis vector per
unit length while V−j uses 2j basis vectors per unit length.

We conclude that the functions φj,k ∈ Vj constitute a basis of Vj. How-
ever, we cannot form a basis of L2 just by taking the union of these since the
subspaces Vj cannot be orthogonal as a consequence of relation (a).

We can define another sequence of subspaces Wj = Vj − Vj−1. These can

be proven to be pairwise orthogonal, and even more
⊕

j Wj = L2.
Looking at the formula W0 = V0 − V1 and bearing in mind that V0 uses

twice as many vectors per unit length as V1 we would be tempted to start
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looking for a function ψ which would constitute a basis of W0. Such a con-
struction is possible by going into the Fourier domain, and the reader is
invited to consult [Blatter, chap. 5] The resulting functions ψj,k constitute
an orthonormal basis of L2.

For our purposes it is convenient to require that:

∫ ∞

−∞
φ(x)dx = 1,

∫ ∞

−∞
|φ(x)|2dx = 1 (6)∫ ∞

−∞
|ψ(x)|2dx = 1 (7)

From axiom b) the following identity holds:

φ(t) =
√

(2)
∞∑
−∞

hkφ(2t− k) for almost all t ∈ R (8)

with the coefficient vector h ∈ l2(Z).
Furthermore we can prove that the wavelet function:

ψ(t) =
√

2
∞∑
−∞

gkφ(2t− k) (9)

=
√

2
∞∑
−∞

(−1)kh1−kφ(2t− k) for almost all t ∈ R (10)

with the coefficient vector g ∈ l2(Z) is orthogonal to the scaling function. If
one additional condition is met, the wavelet functions can be proved to be
orthogonal to each other, giving us a valid basis.

We can therefore define the wavelet expansion of a function f as∑
j,k∈Z

Cjk2
j/2ψ(2j − k) (11)

with the coefficients Cjk defined by

Cjk = 〈f, ψjk〉 =

∫ +∞

−∞
f(x)2j/2ψ(2j − k) dx (12)

We can think of the coefficients of each the functions belonging to each
Vj as representing those features of a signal that have a spread of size com-
parable to 2j/

√
2. From this point of view a multiresolution analysis process

can be imagined such as the work of a common filter bank.
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1.2 A simple example: The Haar Wavelet

The mathematician Alfred Haar was the first to describe, in 1910, an or-
thonormal system for the Hilbert space L2 and proved it to be isomorphic to
the space

l2 := {(ck|k ∈ N)|
∞∑

k=0

|ck|2 <∞} (13)

Since the union of all step functions of step 2j, j ∈ Z is dense in L2 and
the other conditions are obviously satisfied we conclude that 1[0,1) constitutes
a valid scale function for a multiresolution analysis.Starting from the scaling
function φ = 1[0,1) we obtain the Haar Wavelet which has the form of the
following step function:

ψ(x) =


1 (0 ≤ x < 1

2
)

−1 (1
2
≤ x < 1)

0 otherwise

We see that:

ψ(x) = φ(2x)− φ(2x− 1) (14)

φ(x) = φ(2x)− φ(2x− 1) (15)

Intuitively, considering that at the level Vj we are left with a step func-
tion fj of step 2j from two neighbor steps corresponding to the intervals
[2k2̇r, (2k+ 1)2̇r) and [(2k+ 1)2̇r, (2k+ 2)2̇r) we obtain the step correspond-
ing to fj+1’s interval [2k2̇r, (2k+2)2̇r) as their mean value and the coefficient
of the corresponding ψjk function as the difference between the mean value
and the value of the function, as seen in the figure (from [Blatter, p. 24]):

1.3 Algorithms

For the analysis of a signal having as support the interval [0, 1) we define
the scaling function φ and the wavelet function ψ on this interval. Consid-
ering that we have sampled the function in 2N equally distanced points, we
can approximate it by a step function. We can start applying the wavelet
transform from the subspace V−N .
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Figure 1: Haar Wavelet’s action

Considering AN as a 2N size vector containing the coefficients aNk we can
apply the following operator HN in order to obtain a vector BN containing
the coefficients a(N−1)k and C(N−1)k in an interlaced form:

h0 h1 h2 . . . hn

g0 g1 g2 . . . gn

h0 h1 h2 . . . hn

g0 g1 g2 . . . gn

. . .

. . .
h0 h1 h2 . . . hn

g0 g1 g2 . . . gn

h2 . . . hn h0 h1

g2 . . . gn g0 g1


By applying a permutation matrix:

PN [aN−11, CN−11, . . . , aN−1
N
2
− 1, CN−1

N
2
− 1]T

= [aN−11, . . . , aN−1
N
2
− 1, . . . , CN−11, . . . , CN−1

N
2
− 1]T

we move the coefficients aN−1k to the front, therefore we take the first
half of BN for AN−1.

We conclude that we can perform a full wavelet transform by applying
a series of PH operations and an inverse transform by applying a series of
H−1P−1 operations. Knowing that we are multiply by the coefficients hk in
order to obtain the next sequence of as and with gk in order to obtain the
next sequence ck we can represent the transform process by the following
diagram:

aj →h aj−1 →h aj−2 . . . →h a0

�g �g �g

cj−1 cj−2 c0

5



while the inverse transform can be represented as:

aj → aj−1 → aj−2 . . . → a0

� � �
cj−1 cj−2 c0

Since the matrixes involved are sparse the complexity of the multiplica-
tions is O(n). The complexity of the whole series is therefore

∑N
k=1

O(n)
2k =

O(2n) = O(n).

1.4 Advanced topics

Having exposed the basic principles of wavelet analysis we proceed now to
describing some properties of different common wavelets. Since our wavelet
functions are centered around their set of coefficients hk we are interested in
finding the minimal set of coefficients satisfying some constraint equations.
We have from (7) just by integrating both sides:∫

φdx =
√

2
∑

hk

∫
φ(2x− k)d(2x− k) (16)∑

hk =
√

2 (17)

and by integrating with respect to the L2 norm:∫
φ2dx =

√
2
∑

(hk

∫
φ(2x− k)d(2x− k))2 (18)

∑
|hk|2 = 1. (19)

Signals that are smooth present a high degree of linearity. Their Taylor series
expansion around each point tends to decay very fast. We would be interested
in a wavelet function whose scalar product with a given polynomial vanishes:∫ ∞

−∞
xjψ(x)dx = 0 forj = 0, 1, . . . , L− 1 (20)

We say in this case that ψ has its first L moments equal to 0.
Combining equation (9),(20) we obtain∑

(−1)khk = 0,
∑
k(−1)khk = 0 (21)

6



and in taking for example L = 2 the minimal set of coefficients satisfying all
four conditions is:

h0 = 1+
√

3
4
√

2
, h1 = 3+

√
3

4
√

2

h2 = 3−
√

3
4
√

2
, h3 = 1−

√
3

4
√

2

(22)

which defines the Daubechies D4 wavelet.
Having these coefficients we can represent the graph of the function. We
start from the relation φj(x) =

∑
ckφj−1(2x − k), noticing its similarity

to the equation of Iterated Function Systems (fractals). We can set the
box function as φ0 and by iteration draw its graph while using the wavelet
coefficients we represent in the same manner the wavelet function [Strang 2]:

Figure 2: Daubechies D4 Scaling Function (left) and Wavelet Function (right)

An alternate method would be to compute using the same relation from
the values at points x = 2j the values at points x = 2j+1. For obtaining the
initial values at the points x = 1 and x = 2 we use the fact that the function
has as compact support the interval (0, 3) and we solve the equation:

φ(1) =
√

2h2 ∗ φ(1) +
√

2h1 ∗ φ(2) (23)

φ(2) =
√

2h4 ∗ φ(1) +
√

2h3 ∗ φ(2) (24)

which gives as φ(1) and φ(2) as eigenvectors for the eigenvalue λ = 1.
A final question that remained unanswered during our presentation is under
what circumstances the construction in the formula (9) gives us a wavelet
that is orthogonal to it’s translates. We are not going to tackle this problem
here, since it is only relevant in the construction of a wavelet function but the
interested reader is can consult the article [Strang 2] or the book [Blatter].
As we can see the strong point of the wavelet transform is a good localization
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both in terms of scale and position, which gives a signal good localization in
time, since the frequency depends on the scale, and in space. This capacity
to detect local features and features spreading over a larger distance makes
the wavelet transform a suitable candidate for image compression since it is
capable to retain and to evidentiate redundant information which is specific
to a natural signal.
We have to bear in mind that when using wavelets such as Daubechies we
are faced with a compromise between the length of the wavelet coefficients
set to which the processing time is proportional and the speed of decay of
the Taylor series of the processed signal. While an image signal has a slow
decay due to many local irregularities (that is, there will always be trees in
the background) and the filters are quite short, in audio applications where
the signal is much ”cleaner” they tend to be much longer.
The wavelet transform should not be seen as the universal solution for com-
pressing discrete time signals. For example, when compressing a signal that
is composed of sinusoidal functions a Fourier transform is guaranteed to give
a much smaller set of meaningful coefficients.
Finally, anticipating the topic of the second part of this paper, let us say
that an easy method to construct bi-dimensional wavelets is to start from an
one-dimensional wavelet and take the cross products φφ, φψ, ψφ, ψψ, which
give clearly orthogonal functions. Although this method can be easily used,
different genuine bi-dimensional wavelets have been invented.

2 Image Compression

One area where wavelets have incontestably proven their applicability is im-
age processing. As you know high resolution images claim a lot of disk space.
In the age of information highway, the amount of data that needs to be stored
or transmitted is huge. Therefore, compression greatly increases the capacity
of the storage device, on one hand, and on the other, it also reduces costs.

To illustrate the use of compression take the simplest example: an image
of 256 x 256, which takes approximatively 0.2 MB. On a simple floppy disk
one can therefore store 7 such images. But think if this image can be com-
pressed at a 25:1 ratio. The result is 175 images stored on the same floppy
disk.

In this part of the paper, we describe the compression algorithm step
by step, using the ”Lenna” image (fig.3) for illustrations. Finally we will
present the MATLAB code we wrote. We used the WaveLab v802 toolbox,
downloaded from Stanford University’s web site.
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Figure 3: The Well-Known Lenna Image

2.1 Applying the transform

The compression algorithm starts by transforming the image from data space
to wavelet space. This is done on several levels. We start with our data
applying the bi-dimensional transform matrix and we get in the resulting
image the coefficients grouped into four zones, like in the figure, where H
symbolizes high frequency data and L symbolizes low frequency data, like in
the figure:

Figure 4: The Discrete Wavelet Transform Frequency Quadrants
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The LL quadrant of the resulting image is the input of the next iteration.
Usually for image compression purposes 4 or 5 iterations will suffice. In the
next figures the result of the transform on 1 and on 5 levels.

Figure 5: The Discrete Wavelet Transform (1 level and 5 levels)

The 5-level transform’s data is also presented in a mesh form in order
to visualize better the different intensities of the coefficients.An interesting
aspect to notice is that the majority of the DWT coefficients are positioned
in the upper left quadrant.

Figure 6: 3D View on the Discrete Wavelet Transform
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2.2 Choosing a threshold

The next step in the algorithm is to neglect all the wavelet coefficients that
fall below a certain threshold. We select our threshold in such a way as to
preserve a certain percent of the total coefficients - this is known as ”quantile”
thresholding.

The small values of the DWT coefficients retain little detail of the pic-
ture. Therefore they can, up to a limit, be neglected. The key notion is
here the ”perceptual” distortion. Of course some details of the picture are
consequently lost after applying the threshold but the question is to what
extent the human eye can detect the difference between the original and the
reconstructed image. In this direction, a human visual perception model has
been created and its use in image compression has been studied. This model
still remains an ongoing research project at the current time.

In what thresholding is concerned, besides the quantile one, there exist
another 2 main types of thresholding:

• Hard Thresholding eliminates all the coefficients ci that are smaller than
an absolute threshold T . If we denote with c

′
i the new coefficients:

c
′

i =

{
ci if ci > T
0 otherwise

• Soft Thresholding again sets an absolute limit reducing to zero all the
coefficients that fall under it but at the same time it shrinks toward 0
if ci > T . Keeping the notations, the relation for soft thresholding is:

ci
′ = sgn(ci) ·max(|ci| − T, 0)

Coming back to the compression algorithm and the threshold step, in the
next figure we represent the non-zero distribution in the DWT after we have
chosen to use 5% of the coefficients - the greatest in absolute value (fig.7).

2.3 Compression methods

Coding We have designed a very simple compression scheme for sparse
matrices in order to test the efficiency of the algorithm. We traverse the
thresholded wavelet data’s matrix line by line and we copy all the nonzero
values to a vector. When we encounter a zero value, we start counting the
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Figure 7: Distribution of Non-zero in the DWT (5% of the coefficients)

length of the sequence of zeroes to which it belongs. Every such sequence
we replace with a zero value followed by it’s length. After encoding our
MATLAB code prints out the length of the resulting vector.

It is easy to see that the data can be reconstructed from this vector. Our
compression scheme is not very efficient since we obtain about three times
more data than the one belonging to the selected nonzero coefficients. This
mean that when we preserve 5% of the coefficients we only compress the
picture to 15% of its original data.

In order to efficiently store our data it is preferable to work with integers
rather than floats. We can just round our data to the nearest integer or we
can scale it first. This process is known as quantization. We did not use it in
our MATLAB code since we just measure the length of the resulting vector,
and consider that we could encode each value using two bytes.

More popular compression codes include Entropy coding, Huffman coding
and specialized algorithms for coding wavelet transformed image data such
as those created by R. Wells and J. Tian or by J.S. Walker.

In the next paragraph we will briefly discuss the entropy coder. The bot-
tom line idea is that the coder should take advantage of long strings of 0 -
which, after thresholding and quantization, they are mostly placed into the
high frequency quadrants. This is done by ”scanning”.
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Figure 8: Scanning Method for the Entropy Coder [SN]

The 3-level DWT in the above picture illustrates how scanning is per-
formed. If,for example, the shaded area in the 2nd quadrant is found to be
0 - most likely to be so - then is can be assumed that the shaded areas in
quadrants 5 and 8 also have zero coefficients. This idea can also be explained
by comparing the DWT with a tree - where each parent has 4 children. If a
parent is found to be 0, then all his children contain zero values.

Also to be noticed is the scanning pattern for different frequency quadrant
sequences. Vertical for (2,5 and 8), horizontal for (3,6 and 9) and diagonal
for (4,7 and 10). The obtained AC sequences are encoded in a standard
Huffman way. The DC sequence is encoded based on the image continuity
that is the differences of color are stored.

2.4 Applying the Inverse Transform

After decoding the data, the last step of the algorithm is that of applying the
inverse DWT to the ”doctored” image matrix. In the following we include
some pictures where we set different quantile thresholds.
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Figure 9: The Restored Lenna Image (with 10% of the coefficients)

Figure 10: The Restored Lenna Image (with 5% of the coefficients)
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Figure 11: The Restored Lenna Image (with 3% of the coefficients)
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Appendix

This part contains the MATLAB code we have written for the image com-
pression application of wavelets. We worked with the WaveLab v802 toolbox
designed by the Statistics Department of Stanford University. We found it
very helpful and we inspired our program from the examples it contained in
this respect.
For reference, we offer the site where we downloaded it:

<http://www-stat.stanford.edu/ wavelab/>

ncoef= input(’Enter the percentage of the DWT coefficients that

you want to keep:’)

ncoef = (100-ncoef)/100;

%Presenting the image of Lenna

x=readimage(’Lenna’);

autoimage(x);

title(’The Well-Known Lenna

Image’);

uiwait;

%Presenting the image transform of Lenna

qmf=MakeONFilter(’Daubechies’,8);

wlenna=FWT2_PO(x,3,qmf);

wlenna_1=FWT2_PO(x,7,qmf);

y_1 = abs(wlenna_1);

y=abs(wlenna);

subplot(121);

autoimage(y_1);

title(’Wavelet Transform - 1 Level’)

subplot(122);

autoimage(y);

title(’Wavelet Transform of Lenna - 5

Levels’);
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uiwait;

mesh(wlenna);

title(’3D View of the Wavelet Transform’);

uiwait;

%Ilustrating the non-zero elements of the WTransform matrix

coef_sort = sort(abs(wlenna(:)));

treshold = coef_sort(floor(ncoef*65536));

new_wlenna=wlenna.*(abs(wlenna)>treshold);

[i,j,v]=find(new_wlenna);

sp_lenna=sparse(i,j,v,256,256);

spy(sp_lenna);

title(’Distribution of non-zero in the WT of

Lenna’);

uiwait;

%Finding out how much space we need using

%a simple compression scheme

comp = zeros(1);

sz = size(x);

s = sz(1);

comp(1) = s;

n = 1;

onzero = 0;

for i=1:s

for j=1:s

if abs(new_wlenna(i,j)) > 0

if onzero == 1

comp(n) = 0;

n = n+1;

comp(n) = nzero;

n = n+1;

end

comp(n) = new_wlenna(i,j);

n = n+1;

else
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if onzero == 1

nzero = nzero+1;

else

onzero = 1;

nzero = 1;

end

end

end

end

disp(’We compress in a vector of length’);

disp(2*n);

disp(’while the initial size is’);

disp(2*s*s);

disp(’and the compression ratio is’)

disp((s*s)/n);

%Getting the image back

result = IWT2_PO(new_wlenna,3,qmf);

autoimage(result);

title(’Lenna Image Restored (with 5\% of the WT coefficients)’);

uiwait;
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