Motile cilia create fluid-mechanical microhabitats for the active recruitment of the host microbiome

Janna C. Nawroth1,a,b,c,1, Hanliang Guo1,d,1, Eric Koch1, Elizabeth A. C. Heath-Heckman1, John C. Hermanson1, Edward G. Ruby1, John O. Dabiri1,d,1, Eva Kanso1,b, and Margaret McFall-Ngai1,b,2

*Research & Development, Emulate Inc., Boston, MA 02210; 1Graduate Aeronautical Laboratories and Bioengineering, California Institute of Technology, Pasadena, CA 91125; 1Pacific Biosciences Research Center, University of Hawaii at Manoa, Honolulu, HI 96822; 1Department of Aerospace and Mechanical Engineering, University of Southern California, Los Angeles, CA 90089-1191; 1Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720; 1US Department of Agriculture Forest Products Laboratory, Madison, WI 53726; and 1Department of Civil and Environmental Engineering, Stanford University, Stanford, CA 94305

This contribution is part of the special series of Inaugural Articles by members of the National Academy of Sciences elected in 2014.

Contributed by Margaret McFall-Ngai, July 21, 2017 (sent for review April 26, 2017; reviewed by Christophe Eloy and M. A. R. Koehl)

We show that mucociliary membranes of animal epithelium can create fluid-mechanical microenvironments for the active recruitment of the specific microbiome of the host. In terrestrial vertebrates, these tissues are typically colonized by complex consortia and are inaccessible to observation. Such tissues can be directly examined in aquatic animals, providing valuable opportunities for the analysis of mucociliary activity in relation to bacteria recruitment. Using the squid–vibrio model system, we provide a characterization of the initial engagement of microbial symbionts along ciliated tissues. Specifically, we developed an empirical and theoretical framework to conduct a census of ciliated cell types, create structural maps, and resolve the spatiotemporal flow dynamics. Our multiscale analyses revealed two distinct, highly organized populations of cilia on the host tissues. An array of long cilia (~25 μm) with metachronal beat creates a flow that focuses bacteria-sized particles, at the exclusion of larger particles, into sheltered zones; there, a field of randomly beating short cilia (~10 μm) mixes the local fluid environment, which contains host biochemical signals known to prime symbionts for colonization. This cilia-mediated process represents a previously unrecognized mechanism for symbiont recruitment. Each mucociliary surface that recruits a microbiome such as the case described here is likely to have system-specific features. However, all mucociliary surfaces are subject to the same physical and biological constraints that are imposed by the fluid environment and the evolutionary conserved structure of cilia. As such, our study promises to provide insight into universal mechanisms that drive the recruitment of symbiotic partners.

Significance

Recent findings demonstrate that microbiome communities often reside on mucociliated surfaces. While mucociliary clearance of bacteria from such surfaces has been extensively studied, the process of bacterial recruitment has remained unexplored. Here, using a simple model system, we show that ciliated surfaces, in addition to their clearance function, can create fluid-mechanical microhabitats with distinct transport and mixing properties that facilitate the active recruitment of symbiotic candidates from a background of suspended particles. Although each specific system will have unique properties, because ciliary structure and function are highly conserved, studies of models will contribute to an understanding of rules governing the selective behavior of ciliated surfaces.

Reviewers: C.E., Institut de Recherche sur les Phénomènes Hors Equilibre; and M.A.R.K., University of California, Berkeley.

Conflict of interest statement: Coauthor E.A.C.H.-H. and reviewer M.A.R.K. are both affiliated with the University of California, Berkeley, but in different departments.

1J.C.N. and H.G. contributed equally to this work.
2To whom correspondence may be addressed. Email: kanso@usc.edu or mcfalling@hawaii.edu.

This article contains supporting information online at www.pnas.org/lookup/suppl/doi:10.1073/pnas.1706926114/-/DCSupplemental.
Vibrio fischeri, which is an established invertebrate model for investigating interactions between bacterial partners and their host epithelia (for review see ref. 16). Newly hatched E. scolopes recruit V. fischeri to the surface of their nascent light-emitting organ from inhaled seawater. The seawater, which contains a diverse background of other bacterial species and suspended abiotic particles, is drawn into the mantle cavity for the animal’s respiratory flow and passes across the light organ. During embryogenesis, the light organ surface develops two complex, juvenile-specific ciliated fields—each featuring two appendages—that are lost after colonization by symbiotic bacteria, which indicates a possible role of the cilia in promoting symbiont recruitment (Fig. 1B). During initiation of symbiosis, V. fischeri cells become competitively dominant in bacterial aggregates located above the entry pores on the ciliated surface. They reside in these aggregates for a few hours, a time during which they become physiologically prepared or “primed” for their eventual migration through the pores and into the light organ (16). The strict timeline, well-defined localization, and exclusiveness of the squid–vibrio partnership, which occurs in an experimentally accessible, yet intact, internal organ, have revealed highly conserved biochemical mechanisms that also govern specific bacteria–host associations in mammals (16). Here, we used the squid–vibrio symbiosis to investigate the general question of how ciliary activity aids in the transport and selection of a bacterial partner to its target tissue. Specifically, we asked whether ciliary activity facilitates the recruitment of free-living V. fischeri cells from inhaled seawater and facilitates their engagement with the surface pores.

In the current model (17, 18), ciliary activity forms a conveyor belt of adhesive mucus, which directly intercepts particulates from the inhaled stream of seawater and moves them closer to the light organ’s entry pores (Fig. 1C). Instead, we found that one population of cilia generated an outer, vortical flow zone extending far beyond the surface (~200–300 μm) and focusing bacteria and other micrometer-sized particles into an inner, sheltered zone near the surface pores, while preventing suspended matter from adhering elsewhere (Fig. 1D). In this zone, a second, structurally distinct population of cilia gently mixes the fluid, a behavior that could facilitate chemical signaling between host and bacteria (19) and, thereby, promote successful colonization of the light organ.

We discovered these mechanisms by following an integrated experimental and computational approach for dissecting the multiscale structure–function relationships that link the initiation of a bacteria–host association to both the cilia-generated flows and the structure of the ciliated tissues (Fig. 1E).

Results
Evidence for a Cilia-Mediated Bacteria–Host Association. Like the respiratory airways, the light organ is continuously exposed to inhaled particulate matter of a wide range of composition and size (20). In the early stages of symbiosis, wild-type V. fischeri, as well as nonmotile mutants of V. fischeri, nonsymbiont bacteria, and bacteria-sized synthetic particles, all accumulate at the light-organ surface (Fig. 1E), after which further selection takes place (17). These findings indicate that neither a specific bacteria shape nor a specific behavior is necessary for the first stage of association. This result poses two questions: (i) Does the respiratory flow directly deliver bacteria-sized particles to the ciliated surface? (ii) How is larger particulate matter excluded from this surface?

Using video microscopy and particle tracking, we observed two counterrotating fluid vortices near the appendages of the light organ (Fig. 1E). These vortices occur in vivo as well as in excised light organs, indicating little contribution of the mantle geometry
in directing particle trajectories at this scale. Further, during respiration at rest, the mantle pulsates at a much lower frequency (2 Hz) than the ciliary beat frequency (10 Hz), producing a creeping flow that incrementally refreshes the fluid volume in the mantle but contributes negligible inertial mixing and is at least six times slower near the light organ than the cilia-generated surface flow (Fig. S1 and Movie S1). These observations raise the question of whether the mantle-driven flow could play a direct role in delivering suspended particles to the ciliated surface. Such particle capture from oncoming flow has been rigorously studied in aquatic suspension filter feeders (21–24). Mechanisms for particle capture include direct interception, inertial impaction, gravitational deposition, diffusion, and motile-particle deposition (5).

We can rule out a dominant role of motile-particle deposition given that both motile and nonmotile particles are captured at similar timescales and locations (ref. 17 and Fig. 2A). Of the remaining mechanisms, direct interception (DI), where a particle follows a streamline approaching a solid structure at a distance equal to or less than the particle radius (Figs. 1C and 2B), would be dominant given the particle and flow properties observed in our system (Model of Particle Capture by Direct Interception) (25, 26).

To test experimentally whether DI could be a major mode of particle capture, we exposed the animals to a suspension containing both V. fischeri-sized (1 μm diameter) and larger (4 μm diameter) particles. We observed that 1-μm particles accumulated on the side of the appendages facing the pores, as previously reported (17), whereas the 4-μm particles tended to adhere to the outside of the appendages (Fig. 2A) and were captured at significantly lower rates (one-sided Wilcoxon rank sum test, \(P = 0.013; n = 4 \) animals and 7 pairs of ciliated appendages) (Fig. 2C). This size bias is consistent with a role of the light organ in retaining V. fischeri and rejecting larger suspended particles. The DI model, however, predicts the opposite trend, i.e., a lower capture rate of V. fischeri-sized particles compared with larger particles (Fig. 2C) (27). Interestingly, impaired ciliary activity results in indiscriminate particle adhesion throughout the light-organ surface (Fig. S2). Together, these results suggest that particles are not captured by a passive, direct interception mechanism, but instead by an active, cilia-driven filtering mechanism that enables both clearance and selective, localized, aggregation of bacterial candidates at the ciliated surface. We next examined the structure, kinematics, and spatial organization of the cilia covering the surface and then quantitatively related these properties to the ciliary flows and filtering functions that emerged.
commonly seen in motile cilia, i.e., an asymmetric stroke pattern and metachronal coordination across neighboring cilia. In contrast, the short cilia are only 10 μm in length and display a temporally and spatially symmetric beat pattern that had no discernible coordination across neighboring cilia under any experimental condition. This unusual behavior is intriguing because, to our knowledge, symmetric and uncoordinated kinematics have been associated only with perturbed or pathological conditions (29, 30). Our data demonstrate that this behavior can occur in healthy conditions and may have been missed in other systems because of the focus on stereotypic structures and behaviors of motile cilia.

Long Cilia Help Select and Focus Bacteria-Sized Particles. Particle tracking and velocimetry in excised light organs revealed that the two populations of cilia generate two distinct flow compartments (Fig. 4 A and B, Fig. S4, and Movie S3): a vortical flow region consisting of two counterrotating vortices above the long cilia of the appendages and a sheltered zone near the pores above the short cilia. Both passive particles and motile V. fischeri cells that were caught in the vortices followed curved trajectories converging near the ciliated surface, where flow velocities reached up to 600 μm/s. Most of this entrained material was diverted into the central outward jet between the two vortices and was deflected away from the sheltered zone; however, a small fraction of particles entered and remained in the sheltered zone, often together with host-shed mucus (Movie S4). Moreover, the fast, near-surface flow generated by the long cilia prevented particle adhesion to the outer side of the appendages, while wrapping around and sheltering the zone lined by short cilia (Fig. 4 C and D), where particles were found to directly bind to the surface. We specifically verified that the vortical flow and deposition of V. fischeri and other small particles in the sheltered zone were not an artifact of removing the organ from the squid’s mantle cavity, but also take place inside the intact, living animal (Fig. S5 and Movie S5). Further, captured bacteria that actively migrate out of the sheltered zone are swept away (31), which is consistent with the presence of two seamlessly interfacing compartments of slow and fast flows.

We used a computational model to probe the role of the long cilia in creating the two flow compartments. Namely, we reconstructed the cross-section of the organ’s appendages by circumscribing the cilia tips, thereby producing two circles. We modeled the collective activity of the cilia by prescribing a tangential velocity around these circles that reflects the observed direction of the ciliary beat (Fig. 4C, Fig. S6A–F, and Movie S6). This model does not take into account the beat pattern of the individual cilium; it rather accounts for the effective slip velocity caused by the ciliated surface. The resulting flow was obtained by solving Stokes equations for low-Reynolds numbers subject to the prescribed tangential velocities. This flow pattern recapitulates the cilia-driven flow observed empirically, i.e., a pair of
and diameter \(d\) of finite diameter \(d\) that faithfully follow the empirical outcomes. These results support our hypothesis of a cilia-driven selective mechanism that biases particle capture rates in favor of particles the size of bacterial symbionts.

Short Cilia Enhance Molecular Mixing. We next investigated the role of the short cilia lining the sheltered zones. Tracer trajectories suggested a mix of diffusive transport with crisscrossing directional flow (Fig. 5 A–C and Fig. S7); therefore, we speculated that the combination of symmetric beat kinematics in individual cilia and random stroke phase between neighboring cilia may result in enhanced fluid mixing, but no net transport. To test this hypothesis computationally, we developed a carpet model consisting of discrete cilia, where the beat kinematics of each cilium are adapted from empirical measurements (Fig. 2A–C and Table S1). We found that the value of \(d\) increases monotonically with the ratio of appendage spacing \(\Delta\) and diameter \(D\) (Fig. 4G) because, for smaller ratios of \(\Delta/D\), there is greater convergence of outward-bound streamlines near the appendages, preventing any particles spanning these streamlines from entering the sheltered zone. Hence, for increasing ratios of \(\Delta/D\), particles of increasing diameter are captured, and the capture rate of all particles uniformly seeded across the span of the two appendages also increases (Fig. 4H and Fig. S6 I–K). For empirical ranges of \(\Delta\) and \(D\) (Fig. S3), the model predicts a median value of \(d_c = 4 \mu m\) (Fig. 4I), which is congruent with the empirical outcomes. These results support our hypothesis of a cilia-driven selective mechanism that biases particle capture rates in favor of particles the size of bacterial symbionts.

![Diagram](https://example.com/diagram.png)

Fig. 5. Enhanced molecular mixing in the sheltered zone. (A) SEM of one of the two lateral surfaces of the ciliated organ. Dashed box indicates region where short and long cilia interface, as shown in detail in B. (Scale bar: 80 \(\mu m\).) (B) Tracer trajectories visualize the two flow regimes created by long and short cilia. (Scale bar: 25 \(\mu m\).) (C) Close-up of tracer transport in a region of short cilia. The arrows indicate the starting direction of the tracked-particle tracer. (Scale bar: 5 \(\mu m\).) (D) A computational model of fluid transport by a patch of cilia beating in synchrony (Sync), with metachronal wave (Meta), or with random phases between neighboring cilia (Rand). Shown are representative snapshots of counterrotating vortices and a central sheltered zone (Fig. 4E). Although this flow pattern is robust to small perturbations in the tangential velocity profile, it is not necessarily reproducible by profiles corresponding to arbitrary ciliary beat patterns and spatial distributions (e.g., Fig. S6 K–M). This finding indicates that formation of the two distinct flow zones is sensitive to the spatiotemporal organization of ciliary beat.

Next, to explore whether the flow field constitutes a hydrodynamic sieve, selectively barring entrance of suspended material into the sheltered zone, we seeded the computed flow field with particles of finite diameter \(d\) that faithfully follow the flow streamlines (Fig. S6G). These particles model the transport of bacteria, which, under the flow condition given here, cross streamlines neither by diffusion nor by gravity or inertia because the bacteria are near neutrally buoyant (see Flow Visualization and Analysis and Table S1 for details). We observed size-selective streaming, wherein only particles up to a critical diameter \(d_c\) entered the sheltered zones (Fig. 4F). Particles larger than \(d_c\) span so many streamlines that they are diverted into the central outward jet, whereas smaller particles can follow the compressed near-surface streamlines into the sheltered zone. Interestingly, this mechanism has also been exploited in microfluidic devices for particle sorting (32, 33). We found that the value of \(d_c\) increases monotonically with the ratio of appendage spacing \(\Delta\) and diameter \(D\) (Fig. 4G) because, for smaller ratios of \(\Delta/D\), there is greater convergence of outward-bound streamlines near the appendages, preventing any particles spanning these streamlines from entering the sheltered zone. Hence, for increasing ratios of \(\Delta/D\), particles of increasing diameter are captured, and the capture rate of all particles uniformly seeded across the span of the two appendages also increases (Fig. 4H and Fig. S6 I–K). For empirical ranges of \(\Delta\) and \(D\) (Fig. S3), the model predicts a median value of \(d_c = 4 \mu m\) (Fig. 4I), which is congruent with the empirical outcomes. These results support our hypothesis of a cilia-driven selective mechanism that biases particle capture rates in favor of particles the size of bacterial symbionts.
this distribution of particles evolve during multiple cycles of ciliary beat. After 16 cycles, tracer distributions were strikingly different among the three cases: While there is no obvious pattern change in SYNC mode, and limited distortion in META mode, the RAND mode disrupts much of the initial stratification by stretching and folding fluid filaments, a hallmark of so-called chaotic mixing (35). To quantify mixing, we defined a mixing efficiency of \(\eta_{sp} = -\ln(m/m_0)/N \), where \(m_0 \) and \(m \) are the mixing numbers equivalent to the average minimum distance between tracer particles of different colors after 0 and \(N \) cycles, respectively (36, 37). Concordant with the qualitative results, the RAND mode outperforms the other modes in both horizontal and vertical mixing, with mixing efficiency depending on the particular phase distribution used in the simulation (Fig. 5G). Importantly, mixing in RAND mode predicts that initially neighboring particles quickly diverge on separate trajectories (Fig. S8), an expectation that matches the empirical data (Fig. 5C).

We then measured fluid transport in terms of volumetric flow rate \(Q \), defined as the average volume of fluid moved per cilium per beat cycle (Fig. 5F). SYNC mode created zero net fluid transport, as expected from the Scallop theorem at low Reynolds numbers (38), while the META mode generated a small forward flow, and the RAND mode was equally likely to result in forward or backward flow, equivalent to a net flow rate near zero over time. It should be noted that the asymmetric beat generally associated with motile cilia will result in directional fluid transport in both the SYNC and RAND modes (39).

Taken together, these results suggest that a symmetric ciliary beat with a randomized phase achieves chaotic mixing that accelerates molecular transport without generating net fluid transport and effectively doubles the rate of diffusion of biochemical molecules in the kilodalton mass range (37). Such “enhanced” diffusion accelerates the formation of concentration gradients emanating from chemical signal sources, a mechanism exploited in microfluidic devices (40). Specifically, the characteristic time \(T \) to develop a steady-state gradient across a distance \(L \) is determined by diffusion rate \(D \), with \(T \sim L^2/(2D) \) (41). The faster spread and gradient formation of effector molecules would foster the biochemical dialogue among captured \(V. \ fischeri \) and between bacterial and host cells, including nitric oxide–mediated bacterial selection, chitobiase-dependent bacterial priming and chemotaxis, and the interaction with host-released antimicrobial molecules, including BPIs, lysozyme, PGRP2, and galaxin (16, 18). Indeed, a bacterial population in a well-mixed environment, i.e., with fully developed concentration gradients, can better initiate group behaviors by deducing bacterial cell density from the local concentration of quorum signals (42, 43).

Mixing without transport has not been previously described in common ciliary arrangements (34), demonstrating the importance of considering individual ciliary beat together with collective organization. In our analyses, it was first important to implement the symmetric stroke cycle, which by itself does not create any net flow because of the time reversibility in low-Reynolds number regimes (38) (Fig. S8). Second, because any flow-generating asymmetry must therefore arise from the activity of multiple cilia, it was necessary to recapitulate random-phase coordination among neighboring cilia. For the squid–vibrio system specifically, these findings add a fluid-mechanical dimension to the symbiont–host dialogue (Fig. S9), and they refute the longstanding assumption that flow generated by ciliary beat would necessarily compromise the formation of biochemical gradients for bacteria–host signaling (31). Taken together, our study has revealed a class of motile cilia with structural and kinematic adaptations that support fluid mixing in a stagnant zone and, hence, extend the known spectrum of ciliary functions.

Discussion

Our finding of different functional modalities of distinct cilia populations on mucus epithelia opens vistas for the understanding of these important subcellular structures in animal biology. It showcases how the impact of ciliated-tissue patterning extends well beyond the tissue surface, where it controls the formation of distinct fluid-mechanical environments. The combinatorial powers of ciliary parameters described in our study, such as beat direction, kinematics, and coordination, suggest a richness of potential scenarios for shaping the extracellular fluid environment at multiple scales to drive tissue homeostasis and remodeling, much as described for other tissue-organizing mechanical forces (44). Indeed, new imaging techniques have recently mapped both structurally distinct populations of cilia and spatiotemporally varying ciliary flow dynamics, in the ventricles of the mouse brain (45, 46). Multiscale analyses of ciliated tissues not only reveal new tissue-level phenomena, but also enable a quantification of their functional roles in different tissue environments. Such analyses require the integration of empirical and computational approaches for studying cilia function, like those developed in this study, as well as for investigating the particular fluid environment, including air and mucus (47).

In addition, our findings provide a mechanism by which ciliated epithelium generate a landscape of different fluid-mechanical microenvironments that support the formation of distinct “biogeographic” sites for the microbiota. Such a spatial series of ecological niches has previously been demonstrated along other epithelia, such as the mammalian gut lining, where tissue morphology and mucus interact to shape discrete microenvironments, each selecting for characteristic microbial communities important for gut function (48, 49). Furthermore, this study suggests how a microbial pathogen might alter ciliary movement to foster tissue colonization. These pathogens often misappropriate the mechanisms by which a host interacts with its beneficial bacteria, such as using the bacterial surface molecules lipopolysaccharide and peptidoglycan to signal the host (50). Here we have identified a distinct cilia-generated flow that creates a highly localized sheltered zone whose mechanical properties differ markedly from adjacent regions and in which bacterial cells accumulate. While the features of such biomechanical environments may have evolved to foster interaction with the beneficial microbiota, they may also be conscripted, or created de novo, by pathogens. For example, the human airway pathogen Bordetella spp. releases ciliostatic compounds, locally reducing ciliary beat and creating a micromechanical niche that favors pathogen attachment (51).

In conclusion, this study demonstrates that internalized ciliated epithelia can perform diverse and intricate fluid-transport tasks rivaling those of the externally ciliated surfaces of aquatic animals (7, 22, 52). Importantly, we have developed a theoretical and empirical framework for investigating the functional complexity of mucociliary epithelia. This framework will inform efforts to identify novel roles for cilia-generated flow and mechanical environments in human tissues and increase our appreciation of the functional scope of these important subcellular structures in animal biology.

Detailed methods and raw video recordings are available in Supporting Information.

ACKNOWLEDGMENTS. We thank B. Boettner, S. Fraser, and M. Kinzel for helpful discussion of the manuscript. Funding was provided by National Institutes of Health grants from The National Institute of Allergy and Infectious Diseases (AI050661) (to M.M.-N.) and Office of Research Infrastructure Programs (RR012294/OD011024) (to E.G.R.). by the Gordon & Betty Moore Foundation (3396) (to E.G.R.), and by a National Science Foundation Integrated NSF Support Promoting Interdisciplinary Research and Education Grant (NSF-MCB1608744) (to M.M.-N., E.G.R., and E. Kanso).

