
Warped-Preexecution: A GPU Pre-execution
Approach for Improving Latency Hiding

Keunsoo Kim, Sangpil Lee, Myung Kuk Yoon,

*Gunjae Koo, Won Woo Ro, *Murali Annavaram

Yonsei University

*University of Southern California

GPU Core (SM)

Register File

Warp Scheduler

L1 cache

I-cache/Fetch/Decode

Scratchpad

ALU ALU ALU ALU

ALU ALU ALU ALU

ALU ALU ALU ALU

GPU Core (SM)

Register File

Warp Scheduler

L1 cache

I-cache/Fetch/Decode

Scratchpad

ALU ALU ALU ALU

ALU ALU ALU ALU

ALU ALU ALU ALU

GPU Core (SM)

Register File

Warp Scheduler

L1
Cache

I-cache/Fetch/Decode

Scratchpad

ALU ALU ALU ALU

ALU ALU ALU ALU

ALU ALU ALU ALU

GPUs Have Long Memory Latency

On-chip
Interconnect

Memory Partition

Memory
Controller

L2 cache Off-chip
DRAM

Off-chip
Interface

GPUs Have Long Memory Latency

On-chip
Interconnect

Memory Partition

Memory
Controller

L2 cache Off-chip
DRAM

Off-chip
Interface

GPU Core (SM)

Register File

Warp Scheduler

L1 cache

I-cache/Fetch/Decode

Scratchpad

ALU ALU ALU ALU

ALU ALU ALU ALU

ALU ALU ALU ALU

GPU Core (SM)

Register File

Warp Scheduler

L1 cache

I-cache/Fetch/Decode

Scratchpad

ALU ALU ALU ALU

ALU ALU ALU ALU

ALU ALU ALU ALU

GPU Core (SM)

Register File

Warp Scheduler

L1
Cache

I-cache/Fetch/Decode

Scratchpad

ALU ALU ALU ALU

ALU ALU ALU ALU

ALU ALU ALU ALU

200-300
cycles

200-300
cycles

400-600 Cycle DRAM Latency

Long Latency Stalls Warp Execution

Instruction stream of a Warp

Long-latency
memory

instructions

0x80

0x88

0x90

0x98

0xA0

0x80

0x88

0x90

0x98

0xA0

ld.global $r0, [$r1]

add $r2, $r2, #1

mul $r6, $r0, $r6

set.lt $r4, $r2, $r5

$r4 br 0x80

ld.global $r0, [$r1]

add $r2, $r2, #1

mul $r6, $r0, $r6

set.lt $r4, $r2, $r5

$r4 br 0x80

In-order

0x80

0x88

0x90

0x98

0xA0

0x80

0x88

0x90

0x98

0xA0

ld.global $r0, [$r1]

add $r2, $r2, #1

mul $r6, $r0, $r6

set.lt $r4, $r2, $r5

$r4 br 0x80

ld.global $r0, [$r1]

add $r2, $r2, #1

mul $r6, $r0, $r6

set.lt $r4, $r2, $r5

$r4 br 0x80

Long Latency Stalls Warp Execution

Instruction stream of a Warp

Long-latency
stall!

In-order

Stall
Point

Warp Interleaving

▪ GPU interleave multiple warps for latency hiding
• For each warp, instructions are issued in-order

• Warps can be interleaved in any order

Scoreboard Scoreboard Scoreboard Scoreboard

Execution Units

Next inst. Next inst. Next inst. Next inst.

Warp 1 Warp 2 Warp 3 Warp 4

Warp Scheduler

Warp Interleaving

▪ GPU interleave multiple warps for latency hiding
• For each warp, instructions are issued in-order

• Warps can be interleaved in any order

Scoreboard Scoreboard Scoreboard Scoreboard

Execution Units

Next inst. Next inst. Next inst. Next inst.

Warp 1 Warp 2 Warp 3 Warp 4

Warp Scheduler

Warp Interleaving

▪ GPU interleave multiple warps for latency hiding
• For each warp, instructions are issued in-order

• Warps can be interleaved in any order

Scoreboard Scoreboard Scoreboard Scoreboard

Execution Units

Next inst. Next inst. Next inst. Next inst.

Warp 1 Warp 2 Warp 3 Warp 4

Warp Scheduler

Need of Improving Latency Tolerance

▪ Long-latency RAW stalls

• Warps waiting for the response from memory system

• Long memory latency

▪ Load/store unit stall

• No more memory requests can be generated

• Limited memory throughput

0%

20%

40%

60%

80%

100%

SG LI MC WP KM BF SV FD MU BT LP NW FW CF LK DW PF DC S1 BP S2 MT LB ST AE SF MQ SD

Fr
ac

ti
o

n
 o

f
To

ta
l C

yc
le

s

Benchmarks

Long-latency RAW Stall Load/Store Unit Stall Other Stalls

0%

20%

40%

60%

80%

100%

SG LI MC WP KM BF SV FD MU BT LP NW FW CF LK DW PF DC S1 BP S2 MT LB ST AE SF MQ SD

Fr
ac

ti
o

n
 o

f
To

ta
l C

yc
le

s

Benchmarks

Long-latency RAW Stall Load/Store Unit Stall Other Stalls

Need of Improving Latency Tolerance

▪ Long-latency RAW stalls

• Warps waiting for the response from memory system

• Long memory latency

▪ Load/store unit stall

• No more memory requests can be generated

• Limited memory throughput

Long memory latency
23% of cycles stalled

Latency-sensitive Latency-insensitive

More TLP Improves Performance

▪ Better latency tolerance by interleaving more threads

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

TB2 Baseline TB8 TB16

R
el

at
iv

e
Pe

rf
o

rm
an

ce
Performance

Active Thread Blocks / Core

Cost of Increasing Thread Parallelism

▪ Better latency tolerance by interleaving more threads

▪ Need more registers/scratchpads for thread contexts

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

TB2 Baseline TB8 TB16

R
el

at
iv

e
Pe

rf
o

rm
an

ce

Performance

0

50

100

150

200

250

300

350

TB2 Baseline TB8 TB16

St
o

ra
ge

 /
 S

M
 (

K
B

)

Registers Scratchpad

Active Thread Blocks / Core Active Thread Blocks / Core

Cost of Increasing Thread Parallelism

▪ Better latency tolerance by interleaving more threads

▪ Need more registers/scratchpads for thread contexts

▪ Speedup diminishes as thread increases

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

TB2 Baseline TB8 TB16

R
el

at
iv

e
Pe

rf
o

rm
an

ce

Performance

0

50

100

150

200

250

300

350

TB2 Baseline TB8 TB16

St
o

ra
ge

 /
 S

M
 (

K
B

)

Registers Scratchpad

+37%

+6.7%
+4.0%

2x

1.5x

2x

Active Thread Blocks / Core Active Thread Blocks / Core

Cost of Increasing Thread Parallelism

▪ Better latency tolerance by interleaving more threads

▪ Need more registers/scratchpads for thread contexts

▪ Speedup diminishes as thread increases

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

TB2 Baseline TB8 TB16

R
el

at
iv

e
Pe

rf
o

rm
an

ce

Performance

0

50

100

150

200

250

300

350

TB2 Baseline TB8 TB16

St
o

ra
ge

 /
 S

M
 (

K
B

)

Registers Scratchpad

+37%

+6.7%
+4.0%

2x

1.5x

2x

Can we improve latency hiding
without adding more threads?

Cost of Increasing Thread Parallelism

▪ Better latency tolerance by interleaving more threads

▪ Need more registers/scratchpads for thread contexts

▪ Speedup diminishes as thread increases

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

TB2 Baseline TB8 TB16

R
el

at
iv

e
Pe

rf
o

rm
an

ce

Performance

0

50

100

150

200

250

300

350

TB2 Baseline TB8 TB16

St
o

ra
ge

 /
 S

M
 (

K
B

)

Registers Scratchpad

+37%

+6.7%
+4.0%

2x

1.5x

2x

Exploit instruction-level parallelism!

Can we improve latency hiding
without adding more threads?

Where is Instruction-level Parallelism?

ld.global $r0, [$r1]

add $r2, $r2, #1

mul $r6, $r0, $r6

set.lt $r4, $r2, $r5

$r4 br 0x80

ld.global $r0, [$r1]

add $r2, $r2, #1

mul $r6, $r0, $r6

set.lt $r4, $r2, $r5

$r4 br 0x80

Stall

Where is Instruction-level Parallelism?

ld.global $r0, [$r1]

add $r2, $r2, #1

mul $r6, $r0, $r6

set.lt $r4, $r2, $r5

$r4 br 0x80

ld.global $r0, [$r1]

add $r2, $r2, #1

mul $r6, $r0, $r6

set.lt $r4, $r2, $r5

$r4 br 0x80

Long-latency
independent

Stall

Appears
past branch

ld.global $r0, [$r1]

add $r2, $r2, #1

mul $r6, $r0, $r6

set.lt $r4, $r2, $r5

$r4 br 0x80

ld.global $r0, [$r1]

add $r2, $r2, #1

mul $r6, $r0, $r6

set.lt $r4, $r2, $r5

$r4 br 0x80

ld.global $r0, [$r1]

add $r2, $r2, #1

mul $r6, $r0, $r6

set.lt $r4, $r2, $r5

$r4 br 0x80

ld.global $r0, [$r1]

add $r2, $r2, #1

mul $r6, $r0, $r6

set.lt $r4, $r2, $r5

$r4 br 0x80

Where is Instruction-level Parallelism?

ld.global $r0, [$r1]

add $r2, $r2, #1

mul $r6, $r0, $r6

set.lt $r4, $r2, $r5

$r4 br 0x80

ld.global $r0, [$r1]

add $r2, $r2, #1

mul $r6, $r0, $r6

set.lt $r4, $r2, $r5

$r4 br 0x80

Long-latency
independent

Stall

Multiple
Warps

Appears
past branch

Where is Instruction-level Parallelism?

▪ Rescheduling required to exploit instruction-level parallelism

▪ Hardware schedulers may be too expensive for multiple threads

ld.global $r0, [$r1]

add $r2, $r2, #1

mul $r6, $r0, $r6

set.lt $r4, $r2, $r5

$r4 br 0x80

ld.global $r0, [$r1]

add $r2, $r2, #1

mul $r6, $r0, $r6

set.lt $r4, $r2, $r5

$r4 br 0x80

Execution
order

Long-latency
independent

Stall

• Producer-consumer correctness between
ld and mul ignored for illustration

Stall

Solution: Warp Pre-execution

▪ Idea: Skip long-latency dependent instructions while maintaining
in-order semantics

Solution: Warp Pre-execution

▪ Idea: Skip long-latency dependent instructions while maintaining
in-order semantics

▪ P-mode (Pre-execution mode)

• At long-latency stall point, “Switch” warp to P-mode

• “Skip” instructions in long-latency dependence chain

• Execute long-latency independent instructions

Solution: Warp Pre-execution

▪ Idea: Skip long-latency dependent instructions while maintaining
in-order semantics

▪ P-mode (Pre-execution mode)

• At long-latency stall point, “Switch” warp to P-mode

• “Skip” instructions in long-latency dependence chain

• Execute long-latency independent instructions

▪ N-mode (Normal execution mode)

• “Resume” warp at stall point after completion of long-latency operation

• Execute long-latency dependent instructions

Key: Keep in-order
Fetch-decode-issue

Warp Pre-execution

ld.global $r0, [$r2]

add $r2, $r2, #1

mul $r6, $r0, $r6

set.lt $r4, $r2, $r5

$r4 br 0x80

ld.global $r0, [$r2]

add $r2, $r2, #1

mul $r6, $r0, $r6

set.lt $r4, $r2, $r5

$r4 br 0x80

N-Scoreboard

P-Scoreboard

Warp mode: Normal (N)

Key modifications:
• Each warp has “mode” (Normal and Pre-ex)
• Scoreboard/SIMT Stacks for each mode
• P-queue: Records pre-executed instructions

in program order

P-queue

Head

N-Stack

P-Stack

Warp Pre-execution

ld.global $r0, [$r2]

add $r2, $r2, #1

mul $r6, $r0, $r6

set.lt $r4, $r2, $r5

$r4 br 0x80

ld.global $r0, [$r2]

add $r2, $r2, #1

mul $r6, $r0, $r6

set.lt $r4, $r2, $r5

$r4 br 0x80

N-Scoreboard
$r0 (Long)

P-Scoreboard

Warp mode: Normal (N)

P-queue

Head

N-Stack
1111

P-Stack

Long-latency
Inst.

Warp Pre-execution

ld.global $r0, [$r2]

add $r2, $r2, #1

mul $r6, $r0, $r6

set.lt $r4, $r2, $r5

$r4 br 0x80

ld.global $r0, [$r2]

add $r2, $r2, #1

mul $r6, $r0, $r6

set.lt $r4, $r2, $r5

$r4 br 0x80

N-Scoreboard
$r0 (Long)

P-Scoreboard
$r0 (Long)

Warp mode: Pre-execution (N  P)

P-queue

Head

N-Stack
1111

P-Stack
1111

Long-latency
dependent!

Long-latency dependent detected
 Switch from N-mode to P-mode

Copy

Warp Pre-execution

ld.global $r0, [$r2]

add $r2, $r2, #1

mul $r6, $r0, $r6

set.lt $r4, $r2, $r5

$r4 br 0x80

ld.global $r0, [$r2]

add $r2, $r2, #1

mul $r6, $r0, $r6

set.lt $r4, $r2, $r5

$r4 br 0x80

N-Scoreboard
$r0 (Long)

P-Scoreboard
$r0 (Long)
$r6 (Skip)

Warp mode: Pre-execution (P)

P-queue

Head

N-Stack
1111

P-Stack
1111

Skip

In P-mode, instructions dependent to
in-flight long-latency operation are
skipped

Warp Pre-execution

ld.global $r0, [$r2]

add $r2, $r2, #1

mul $r6, $r0, $r6

set.lt $r4, $r2, $r5

$r4 br 0x80

ld.global $r0, [$r2]

add $r2, $r2, #1

mul $r6, $r0, $r6

set.lt $r4, $r2, $r5

$r4 br 0x80

N-Scoreboard
$r0 (Long)

P-Scoreboard
$r0 (Long)
$r6 (Skip)

Warp mode: Pre-execution (P)

N-Stack
1111

P-Stack
1111

In P-mode, executed instructions
are recorded in P-queue

P-queue

set.lt

Head

Warp Pre-execution

ld.global $r0, [$r2]

add $r2, $r2, #1

mul $r6, $r0, $r6

set.lt $r4, $r2, $r5

$r4 br 0x80

ld.global $r0, [$r2]

add $r2, $r2, #1

mul $r6, $r0, $r6

set.lt $r4, $r2, $r5

$r4 br 0x80

N-Scoreboard
$r0 (Long)

P-Scoreboard
$r0 (Long)
$r6 (Skip)

Warp mode: Pre-execution (P)

N-Stack
1111

P-Stack
1111
1100
0011

Divergent state handled using P-stack
 P-mode continues beyond branches
No branch speculation
 Stop at dependent branch

P-queue

set.lt

Head

Warp Pre-execution

ld.global $r0, [$r2]

add $r2, $r2, #1

mul $r6, $r0, $r6

set.lt $r4, $r2, $r5

$r4 br 0x80

ld.global $r0, [$r2]

add $r2, $r2, #1

mul $r6, $r0, $r6

set.lt $r4, $r2, $r5

$r4 br 0x80

N-Scoreboard
$r0 (Long)

P-Scoreboard
$r0 (Skip)
$r6 (Skip)

Warp mode: Pre-execution (P)

N-Stack
1111

P-Stack
1111
1100
0011

In P-mode, loads are used as accurate
prefetch (treated as skipped)

P-queue

set.lt

Head

Prefetch

Warp Pre-execution

ld.global $r0, [$r2]

add $r2, $r2, #1

mul $r6, $r0, $r6

set.lt $r4, $r2, $r5

$r4 br 0x80

ld.global $r0, [$r2]

add $r2, $r2, #1

mul $r6, $r0, $r6

set.lt $r4, $r2, $r5

$r4 br 0x80

N-Scoreboard
$r0 (Long)

P-Scoreboard
$r0 (Skip)
$r6 (Skip)

Warp mode: Pre-execution (P)

N-Stack
1111

P-Stack
1111
1100
0011

P-queue

set.lt

add

Head

2nd instance of mul is also skipped

Warp Pre-execution

ld.global $r0, [$r2]

add $r2, $r2, #1

mul $r6, $r0, $r6

set.lt $r4, $r2, $r5

$r4 br 0x80

ld.global $r0, [$r2]

add $r2, $r2, #1

mul $r6, $r0, $r6

set.lt $r4, $r2, $r5

$r4 br 0x80

N-Scoreboard
$r0 (Long)

P-Scoreboard
$r0 (Skip)
$r6 (Skip)

Warp mode: Pre-execution (P)

N-Stack
1111

P-Stack
1111
1100
0011

set.lt

P-queue

set.lt

add

Head

• 2nd instance of set.lt pushed to P-queue
• P-queue can hold multiple instances of

an instruction in the presence of loops

Warp Pre-execution

ld.global $r0, [$r2]

add $r2, $r2, #1

mul $r6, $r0, $r6

set.lt $r4, $r2, $r5

$r4 br 0x80

ld.global $r0, [$r2]

add $r2, $r2, #1

mul $r6, $r0, $r6

set.lt $r4, $r2, $r5

$r4 br 0x80

N-Scoreboard
$r0 (Long)

P-Scoreboard
$r0 (Long)
$r6 (Skip)

Warp mode: Normal (P  N)

N-Stack
1111

P-Stack
1111
1100
0011

set.lt

P-queue

set.lt

add

Head

After 1st ld.global completion,
switch to N-mode and continues
from the original next instruction

Warp Pre-execution

ld.global $r0, [$r2]

add $r2, $r2, #1

mul $r6, $r0, $r6

set.lt $r4, $r2, $r5

$r4 br 0x80

ld.global $r0, [$r2]

add $r2, $r2, #1

mul $r6, $r0, $r6

set.lt $r4, $r2, $r5

$r4 br 0x80

N-Scoreboard

P-Scoreboard

Warp mode: Normal (N)

N-Stack
1111

P-Stack

set.lt

P-queue

set.lt

add

Head

set.lt was pre-executed
• Popped from P-queue head
• No re-execution, result reused

immediately

Reuse

Warp Pre-execution

ld.global $r0, [$r2]

add $r2, $r2, #1

mul $r6, $r0, $r6

set.lt $r4, $r2, $r5

$r4 br 0x80

ld.global $r0, [$r2]

add $r2, $r2, #1

mul $r6, $r0, $r6

set.lt $r4, $r2, $r5

$r4 br 0x80

N-Scoreboard
$r0

(Cache hit)

P-Scoreboard

Warp mode: Normal (N  P)

N-Stack
1111
1100
0011

P-Stack

P-queue

add

set.lt

Head

Prefetch
Hit

Prefetches generated for 2nd ld.global
will make cache hits

Warp Pre-execution

ld.global $r0, [$r2]

add $r2, $r2, #1

mul $r6, $r0, $r6

set.lt $r4, $r2, $r5

$r4 br 0x80

ld.global $r0, [$r2]

add $r2, $r2, #1

mul $r6, $r0, $r6

set.lt $r4, $r2, $r5

$r4 br 0x80

N-Scoreboard

P-Scoreboard

Warp mode: Normal (N  P)

N-Stack
1111
1100
0011

P-Stack

P-queue

add

set.lt

Head

Reuse

The result of 2nd add also reused
through P-queue

Problem: WAR and WAW Hazards

▪ sub.$r2 must be written to register file after mul.$r2
is read

▪ sub can be pre-executed, but the result cannot be
updated until mul.$r2 is read!

ld.global $r0, [$r2]

add $r1, $r1, #4

mul $r3, $r2, $r0

sub $r2, $r4, $r5

N

P

Solution: Register Renaming

▪ Idea: Store pre-executed results to rename registers

▪ In P-mode, source and destination registers renamed
• mul.$r2 not overwritten, sub.$r2 renamed to $p0

• Subsequent $r2 renamed to $p0

• Values propagated via rename registers in P-mode

ld.global $r0, [$r1]

add $r1, $r1, #4

mul $r3, $r2, $r0

sub $p0, $r4, $r5

set.lt $r4, $p0, $r5

N

P

$r2 renamed to $p0

$r2 renamed to $p0

Solution: Register Renaming

▪ Idea: Store pre-executed results to rename registers

▪ In P-mode, source and destination registers renamed
• mul.$r2 not overwritten, sub.$r2 renamed to $p0

• Subsequent $r2 renamed to $p0

• Values propagated via rename registers in P-mode

▪ In N-mode, commit renamed registers in-order (reuse)
• Pre-computed sub.$r2 is read from rename register $p0

ld.global $r0, [$r1]

add $r1, $r1, #4

mul $r3, $r2, $r0

sub $p0, $r4, $r5

set.lt $r4, $p0, $r5

mul $r3, $r2, $r0

sub $r2, $r4, $r5

N

P

$r2 renamed to $p0

$r2 renamed to $p0

Result read from $p0,
updated to $r2

N

Warp Pre-execution

ld.global $r0, [$r2]

add $r2, $r2, #1

mul $r6, $r0, $r6

set.lt $r4, $r2, $r5

$r4 br 0x80

ld.global $r0, [$r2]

add $r2, $r2, #1

mul $r6, $r0, $r6

set.lt $r4, $r2, $r5

$r4 br 0x80

N-Scoreboard

P-Scoreboard

Warp mode: Normal (N  P)

N-Stack
1111

P-Stack

set.lt

P-queue

set.lt

add

Head

Reuse

$r4 $p100set.lt

Arch. Dst ID Rename Register IDInst. ID

More details in paper

Do We Need More Registers?

▪ GPUs underutilize register file

• Thread block granularity register management

▪ Unused registers for P-mode rename registers

• Increased register utilization (73%  86%)

0%

20%

40%

60%

80%

100%

MU BT BP LB AE LK SF S2 ST SG KM SV MC PF MQ DC S1 CF FW LP DWWP BF FD SD MT LI NW

R
eg

is
te

r
U

ti
liz

at
io

n
 (

%
)

Baseline P-mode

0

50

100

150

200

250

Base 2xTLP 2xTLP
+OptTB

P-modeP-mode
+OptTB

St
o

ra
ge

/S
M

 (
K

B
)

On-chip Storage P-mode Overhead

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

Base 2xTLP 2xTLP
+OptTB

P-modeP-mode
+OptTB

R
el

at
iv

e
Pe

rf
o

rm
an

ce

Performance

Performance and Storage

▪ Up to +38% for latency-sensitive top 50% applications

• Combined with OptTB (Optimized thread block count)

▪ Only 10% storage overhead

+19%
+22%

+38%

Outperforms
2x more threads

+22%

2x

1.1x

Less storage
overhead

P-mode Instruction Coverage

▪ Pre-execution covers 38% of dynamic instructions

• 16% useful instructions (pre-execution/prefetch)

• 22% skipped

▪ Up to 90% coverage, up to 60% useful pre-execution

▪ Implication: GPU apps may have further ILP to exploit

0%

20%

40%

60%

80%

100%

LI

K
M SV SG

M
C B
T

C
F LP FD

W
P LB

D
W LK FW D
C S2

M
U B
P ST S1 P
F

B
F

N
W A
E SF

M
Q

M
T SD

Pre-execute/Prefetch Skipped

Conclusion

▪ Scaling TLP for higher latency tolerance demands high
storage cost

▪ Our solution: Warp pre-execution
• Exploit instruction-level parallelism

• Retain in-order fetch-decode-scheduling

▪ Challenges
• WAW and WAR hazards

• Solution: Register renaming

▪ Pre-execution shows promising results
• 38% performance improvement

(combined with TLP throttling)

Warped-Preexecution: A GPU Pre-execution
Approach for Improving Latency Hiding

Keunsoo Kim, Sangpil Lee, Myung Kuk Yoon,

*Gunjae Koo, Won Woo Ro, *Murali Annavaram

Yonsei University

*University of Southern California

Thank you for listening!

