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GPUs Have Long Memory Latency
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Instruction stream of a Warp

0x80
0x88
0x90
0x98
0xAOD
0x80
0x88
0x90
0x98
0xAOD

ld.global
add

mul
set.lt
$Srd br
l1d.global
add

mul
set.1lt
Srd br

$r0,
$r2,
$ro,
sr4,
0x80
$r0,
$r2,
$ro,
s$r4,
0x80

[Srl]
$r2,
$r0,
$r2,

[Srl]
$r2,
$r0,
$r2,

#1
Sro6
Srb5

#1
Sr6
Srbh

Long Latency Stalls Warp Execution

In-order



Long Latency Stalls Warp Execution

Stall
Point

Instruction stream of a Warp

0x80
0x88
0x90

ld.global
add
mu Ll

$r0) [Srl]

Sr2,
Sro,

Sr2,
$r0)

#1
Sro6

Long-latency

stall!

In-order



Warp Interleaving

= GPU interleave multiple warps for latency hiding
« For each warp, instructions are issued in-order
« Warps can be interleaved in any order

Warp 1 Warp 2 Warp 3 Warp 4

Next inst.

Scoreboard
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Warp Interleaving

= GPU interleave multiple warps for latency hiding
« For each warp, instructions are issued in-order
« Warps can be interleaved in any order

Warp 1 Warp 2 Warp 3 Warp 4

Next inst. Next inst. Next inst. Next inst.

Scor¢ oard Scor¢ oard Scor¢ oard Scor¢ oard




Need of Improving Latency Tolerance

M Long-latency RAW Stall W Load/Store Unit Stall O Other Stalls
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= Long-latency RAW stalls
« Warps waiting for the response from memory system
* Long memory latency

» Load/store unit stall
« No more memory requests can be generated
 Limited memory throughput



Need of Improving Latency Tolerance

M Long-latency RAW Stall W Load/Store Unit Stall O Other Stalls
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More TLP Improves Performance

= Better latency tolerance by interleaving more threads
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Relative Performance

Cost of Increasing Thread Parallelism

= Better latency tolerance by interleaving more threads

= Need more registers/scratchpads for thread contexts

1.2
1.1

1
0.9
0.8
0.7
0.6
0.5

@ Performance

Baseline
Active Thread Blocks / Core

TB16

[ Registers M Scratchpad

Baseline TB16
Active Thread Blocks / Core




Relative Performance

Cost of Increasing Thread Parallelism

= Better latency tolerance by interleaving more threads
= Need more registers/scratchpads for thread contexts
= Speedup diminishes as thread increases
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Cost of Increasing Thread Parallelism

Can we improve latency hiding
without adding more threads?




Cost of Increasing Thread Parallelism

Can we improve latency hiding
without adding more threads?

Exploit instruction-level parallelism!




Where Is Instruction-level Parallelism?

ld.global
add

mul
set.lt
Srd br
l1d.global
add

mul
set.lt
Srd br

$ro0,
$r2,
$ro,
sr4,
0x80
$xr0,
$r2,
$ro,
s$r4,
0x80

[Srl]
Sr2, #1
Sr0, Sro
Sr2, Sr5

[Srl]
Sr2, #1
Sr0, Sré6
Sr2, Srb




Where Is Instruction-level Parallelism?

Stall N

Appears
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ld.global
add

mul
set.lt
Srd br
l1d.global
add

mul
set.lt
Srd br

$r0, [Srl]
Sr2, Sr2, #1
Sro, $r0, Sro
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Where Is Instruction-level Parallelism?

Multiplf/

Warps

Stall N

Appears

past branch

v
....

.
.
bs* o

“‘
o

1. Long-latency

“? independent

1d.global Sr0, [Srl]
14 _~lnhal Sr0  [Sv1]
ld.global Sr0, [Srl]
add $r2, Srz2, #1
mul Sr6, $r0, Sro
set.lt Srd, S$r2, Srd5 -l
Srd br 0x80 .
T 1ld.global  $r0, [$rl] »
add sr2, Sr2, #1 -
—| mul Sro, $r0, S$Sro6 o
set.lt $rd, $r2, $r5 [
| Srd br 0x80 :




Where Is Instruction-level Parallelism?

= Rescheduling required to exploit instruction-level parallelism

= Hardware schedulers may be too expensive for multiple threads

Execution
orcall

ld.global

add
mul
set.lt
Srd br

l1d.global

add
mul
set.lt
Srd br

$ro,
$r2,
$ro,
sr4,
0x80
$xr0,
$r2,
$ro,
s$r4,
0x80

[Srl]
Sr2, #1
Sr0, Sro
Sr2, Sr5

[Srl]
Sr2, #1
Sr0, Sré6
Sr2, Srb

S—

* Producer-consumer correctness between

|d and mul ignored for illustration

Long-latency
independent



Solution: Warp Pre-execution

» |dea: Skip long-latency dependent instructions while maintaining
In-order semantics



Solution: Warp Pre-execution

» |dea: Skip long-latency dependent instructions while maintaining
In-order semantics

* P-mode (Pre-execution mode)
« At long-latency stall point, “Switch” warp to P-mode
« “Skip” instructions in long-latency dependence chain
« Execute long-latency independent instructions



Solution: Warp Pre-execution

» |dea: Skip long-latency dependent instructions while maintaining
In-order semantics

* P-mode (Pre-execution mode)
« At long-latency stall point, “Switch” warp to P-mode
« “Skip” instructions in long-latency dependence chain
« Execute long-latency independent instructions

* N-mode (Normal execution mode)
« “Resume” warp at stall point after completion of long-latency operation
« Execute long-latency dependent instructions

e ™
Key: Keep in-order
Fetch-decode-issue




Warp Pre-execution

Warp mode: Normal (N)

ld.global  $r0, [Sr2] N-Scoreboard || N-Stack
add $r2, $r2, #1
mu 1l Sr6, $r0, Sro
set.lt Srd4, Sr2, Srb5
Sr4 br 0x80 i
ld.global $Sr0, [Sr2] P-Scoreboard || P-Stack
add Sr2, Sr2, #1
mu 1l Sr6, $r0, Sro
set.lt srd, Sr2, Sr5
Sr4 br 0x80
P-queue
Key modifications: A

e Each warp has “mode” (Normal and Pre-ex)

e Scoreboard/SIMT Stacks for each mode

* P-queue: Records pre-executed instructions
in program order Head




Warp Pre-execution

Warp mode: Normal (N)

dld-global $r0, [Sr2] N-Scoreboard || N-Stack
Long-latency $r0 (Long) 1111

Inst.

P-Scoreboard || P-Stack

P-queue

Head



Warp Pre-execution

Warp mode: ( )
ld.global  $r0, [Sr2] N-Scoreboard || N-Stack
add Sr2, Sr2, #1 Sr0 (Long) 1111
ol $r6, $r0, 5$ré

P-Scoreboard || P-Stack
Sr0 (Long) 1111

P-queue

Long-latency dependent detected
- Switch from N-mode to P-mode

Head



Warp Pre-execution

Warp mode: Pre-execution (P)

ld.global Sr0, [$Sr2]
add $Sr2, Sr2, #1
[«

-Yﬂ'l'l—l (A SN
I L '\lJ_I_U, Y-l-v,

In P-mode, instructions dependent to

in-flight long-latency operation are
skipped

N-Scoreboard || N-Stack
Sr0 (Long) 1111
P-Scoreboard || P-Stack
Sr0 (Long) 1111

Sr6 (Skip)
P-queue

Head




Warp Pre-execution

Warp mode: Pre-execution (P)

ld.global Sr0, [$Sr2]

add Sr2, Sr2, #1

mi1 ] [P S <

o P L Oy YL Uy L O
#set.lt Srd, Sr2, $r5

In P-mode, executed instructions
are recorded in P-queue

N-Scoreboard || N-Stack
Sr0 (Long) 1111
P-Scoreboard || P-Stack
Sr0 (Long) 1111

Sr6 (Skip)
P-queue
set.lt

Head




Warp Pre-execution

Warp mode: Pre-execution (P)

1ld.global $r0, [$r2] N-Scoreboard || N-Stack
add Sr2, Sr2, #1 Sr0 (Long) 1111
g Sr6,—Sr0,—S5r6

set.lt Srd4, Sr2, Srb5

Sr4 br 0x80

P-Scoreboard || P-Stack
Sr0 (Long) 1111
Sr6 (Skip) 1100

0011
P-queue

Divergent state handled using P-stack

=» P-mode continues beyond branches

No branch speculation ot It

=>» Stop at dependent branch

Head



Warp Pre-execution

Warp mode: Pre-execution (P)

ld.global  $x0, [Sr2] N-Scoreboard || N-Stack
add $r2, Sr2, #1 $r0 (Long) 1111
FRgt Sr6,—Sr0,—S5r6
set.lt Srd4, Sr2, Sr5
Sr4 br 0x80

ﬂld.global $xro0, [$r2]ik P-Scoreboard || P-Stack

$r0 (Skip) 1111
Sr6 (Skip) 1100
0011

P-queue

In P-mode, loads are used as accurate
prefetch (treated as skipped)

set.lt

Head



Warp Pre-execution

Warp mode: Pre-execution (P)

ld.global $r0, [$r2] N-Scoreboard || N-Stack
add Sr2, Sr2, #1 Sr0 (Long) 1111
FRgt Sr6,—Sr0,—S5r6
set.lt Srd4, Sr2, Srb5
$Srd br 0x80
ld.global  $roO, [$r2]ik P-Scoreboard || P-Stack
add Sr2, Sr2, #1 Sr0 (Skip) 1111
) Sr6—$£0—56 $r6 (Skip) 1100
0011
P-queue
2"d instance of mul is also skipped add
set.lt

Head



Warp mode: Pre-execution (P)

Warp Pre-execution

ld.global Sr0, [$Sr2]
add $r2, $r2, #1
mi11 ] A &N [« A
o T P L Oy YL Uy L O
set.lt Srd4, Sr2, Srb5
Srd br 0x80
ld.global  $r0, [$r2]¥r
add Sr2, Sr2, #1
m11 ] [« A & [«
o oL Oy YL Uy, v L O
-Set.lt Srd4, Sr2, S$Srb5

2"d instance of set.It pushed to P-queue
P-queue can hold multiple instances of
an instruction in the presence of loops

N-Scoreboard || N-Stack
Sr0 (Long) 1111
P-Scoreboard || P-Stack
SrO (Skip) 1111
Sr6 (Skip) 1100

0011
P-queue
set.lt
add
set.lt

Head




Warp Pre-execution

Warp mode: ( )
ld.global  $r0, [Sr2] N-Scoreboard || N-Stack
add Sr2, Sr2, #1 Sr0 (Long) 1111

-mul sr6, $r0, Sré6

P-Scoreboard || P-Stack
Sre il rig) 1112

SO (SKP) | 50
0011
P-queue
. t.It
After 15t Id.global completion, >
add

switch to N-mode and continues

from the original next instruction set.lt
Head




Warp Pre-execution

Warp mode: Normal (N)

ld.global Sr0, [$Sr2]

add $Sr2, Sr2, #1
mul $Sr6, $r0, Sré6
#set.lt Srd, $r2, Sr5

set.It was pre-executed

 Popped from P-queue head

* No re-execution, result reused
immediately

N-Scoreboard

N-Stack
1111

P-Scoreboard

P-Stack

P-queue

set.lt

add

set.lt

Head




Warp Pre-execution

Warp mode: Normal ( )

ld.global Sr0, [$Sr2]

add $r2, Sr2, #1

mul Sr6, $r0, Sro
set.1lt Srd4, Sr2, Sr5
Srd4 br 0x80

m) 1d.global $r0, [$r2]¥r

Prefetches generated for 2" Id.global
will make cache hits

N-Scoreboard || N-Stack
Sr0 1111
(Cache hit) 1100
0011

P-Scoreboard || P-Stack

P-queue

set.lt

add

Head




Warp Pre-execution

Warp mode: Normal ( )

ld.global Sr0, [$Sr2]

add $r2, Sr2, #1
mu 1l Sr6, $r0, Sro
set.lt Srd4, Sr2, Sr5
Srd4 br 0x80
ld.global  $r0, [$r2]¥r
‘add $r2, Srz2, #1

The result of 2" add also reused
through P-queue

N-Scoreboard || N-Stack
1111
1100
0011
P-Scoreboard || P-Stack
P-queue

set.lt

add

Head




Problem: WAR and WAW Hazards

ld.global $r0, [$r2]

N add Srl, Srl, #4
FREE S¥r3,—Sr2—5rQ
P sub Sr2, Sr4, Srb

" sub.S$r2 must be written to register file after mul. $r2
IS read

* sub can be pre-executed, but the result cannot be
updated until mul.S$r2 Is read!



Solution: Register Renaming

ld.global $r0, [Srl]

N
add Srl, Srl, #4
» Sr2 renamed to Sp0
i Em S $r},/$?/2,$r0 » °P
P sub i5p0s Sr4, $rb

» |dea: Store pre-executed results to rename registers

* In P-mode, source and destination registers renamed
 mul.S$r2 not overwritten, sub.$r2 renamed to $p0
« Subsequent $r2 renamed to Sp0
» Values propagated via rename registers in P-mode



Solution: Register Renaming

N ld.global $r0, [Srl]
add Srl, Srl, #4

el $r},/$?/2,$r0 » Sr2 renamed to Sp0
p sub iSp0,; Srd, Sr5

set.lt Srd, i Sp07—$+5— $r2 renamed to 5p0
N LS :iféﬁ $r2, Sr0 Result read from SpO,

sub iPr2, Sr4, updated to $r2

» |dea: Store pre-executed results to rename registers

* In P-mode, source and destination registers renamed
 mul.S$r2 not overwritten, sub.$r2 renamed to $p0
« Subsequent $r2 renamed to Sp0
« Values propagated via rename registers in P-mode

* In N-mode, commit renamed registers in-order (reuse)
* Pre-computed sub.S$r2 isread from rename register Sp0



Warp Pre-execution

Warp mode: Normal (

)

ld.global  $r0, [Sr2] N-Scoreboard || N-Stack

add $r2/ $r2r #1 1111
mul Sr6, Sr0, Sré6
#set.lt Srd, $r2, $r5

P-Scoreboard || P-Stack

P-queue
Inst. ID Arch. Dst ID Rename Regis.’E.er ID set.lt
set.lt Srd $p100 | e | add
More details in paper vl set.lt




Do We Need More Registers?

100%
80%
60%
40%
20%

Register Utilization (%)

0%

W Baseline M P-mode

MU BT BP LB AE LK SF S2 ST SG KM SVMC PFMQDC S1 CF FW LP DWWP BF FD SD MT LI NW

» GPUs underutilize register file

» Thread block granularity register management

» Unused registers for P-mode rename registers

 Increased register utilization (73% - 86%)



Relative Performance

Performance and Storage

= Up to +38% for latency-sensitive top 50% applications

= Only 10% storage overhead

1.5
1.4
1.3
1.2
1.1

[N

0.9
0.8

I Performance

+38%

+22% +22%
+19% I I

Base 2xTLP 2xTLP P-modeP-mode
+OptTB +OptTB

Outperforms
2X more threads

« Combined with OptTB (Optimized thread block count)

@ On-chip Storage B P-mode Overhead

250

Storage/SM (KB)
= = N
o U o
S o ©o

Ul
o

o

2X
I I 1.1x

Base 2xTLP 2xTLP P-modeP-mode
+OptTB +OptTB

Less storage
overhead




P-mode Instruction Coverage

[ Pre-execute/Prefetch W Skipped

2

* Pre-execution covers 38% of dynamic instructions
* 16% useful instructions (pre-execution/prefetch)
« 22% skipped

= Up to 90% coverage, up to 60% useful pre-execution

100%
80%
60%
40%
20%

0%

Ll D—
KM m—
SV I
SG I
MC
BT I
Lp I
FD

LB

DW Hmmm

LK
FW

DC I

S2 mmm
MU

BP m

ST mm

S1 W

PF HE

BF I

NW N

AE I
SF 1

= Implication: GPU apps may have further ILP to exploit

MQ |
MT |

SD |



Conclusion

= Scaling TLP for higher latency tolerance demands high
storage cost

= Qur solution: Warp pre-execution
« EXxploit instruction-level parallelism
« Retain in-order fetch-decode-scheduling

» Challenges
« WAW and WAR hazards
« Solution: Register renaming

* Pre-execution shows promising results

» 38% performance improvement
(combined with TLP throttling)
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