ST, | o .
R YONSEI =2 USC University of

J UNIVERSITY {1V Southern California

Warped-Preexecution: A GPU Pre-execution
Approach for Improving Latency Hiding

Keunsoo Kim, Sangpil Lee, Myung Kuk Yoon,
*Gunjae Koo, Won Woo Ro, *Murali Annavaram

Yonsei University
*University of Southern California

GPUs Have Long Memory Latency

GPU Core (SM)

GPU Core (SM)

GPU Core (SM)

|

|-cache/Fetch/Decode ‘

|

Warp Scheduler ‘

|

Register File ‘

ALU ALU ALU ALU
ALU ALU ALU ALU
ALU ALU ALU ALU
L1
Scratchpad
Cache

|]] .
_amp m)

On-chip
Interconnect

<>

Memory Partition

L2 cache

Memory
Controller

>

Off-chip
Interface

Off-chip

DRAM

GPUs Have Long Memory Latency

GPU Core (SM)

GPU Core

(SM)

GPU Core (SM)

|-cache/Fetch/Decode

Warp Scheduler

Register File
ALU ALU ALU ALU
ALU ALU ALU ALU
ALU ALU ALU ALU
L1
Scratchpad
Cache

|]] .
_amp m)

} ¢———— 400-600 Cycle DRAM Latency

On-chip

=)
Interconnect

200-300
cycles

Memory Partition

L2 cache

Memory
Controller

>

Off-chip Off-chip
Interface DRAM
200-300

cycles

Instruction stream of a Warp

0x80
0x88
0x90
0x98
0xAOD
0x80
0x88
0x90
0x98
0xAOD

ld.global
add

mul
set.lt
$Srd br
l1d.global
add

mul
set.1lt
Srd br

$r0,
$r2,
$ro,
sr4,
0x80
$r0,
$r2,
$ro,
s$r4,
0x80

[Srl]
$r2,
$r0,
$r2,

[Srl]
$r2,
$r0,
$r2,

#1
Sro6
Srb5

#1
Sr6
Srbh

Long Latency Stalls Warp Execution

In-order

Long Latency Stalls Warp Execution

Stall
Point

Instruction stream of a Warp

0x80
0x88
0x90

ld.global
add
mu Ll

$r0) [Srl]

Sr2,
Sro,

Sr2,
$r0)

#1
Sro6

Long-latency

stall!

In-order

Warp Interleaving

= GPU interleave multiple warps for latency hiding
« For each warp, instructions are issued in-order
« Warps can be interleaved in any order

Warp 1 Warp 2 Warp 3 Warp 4

Next inst.

Scoreboard

Warp Interleaving

= GPU interleave multiple warps for latency hiding
« For each warp, instructions are issued in-order
« Warps can be interleaved in any order

Warp Interleaving

= GPU interleave multiple warps for latency hiding
« For each warp, instructions are issued in-order
« Warps can be interleaved in any order

Warp 1 Warp 2 Warp 3 Warp 4

Next inst. Next inst. Next inst. Next inst.

Scor¢ oard Scor¢ oard Scor¢ oard Scor¢ oard

Need of Improving Latency Tolerance

M Long-latency RAW Stall W Load/Store Unit Stall O Other Stalls

100%

80%

60%]
40%

THTVRE I e
] Dollll A

SG LI MC WP KM BF SV FD MU BT LP NW FW CF LK DW PF DC S1 BP S2 MT LB ST AE SF MQ SD

Fraction of Total Cycles

Benchmarks

= Long-latency RAW stalls
« Warps waiting for the response from memory system
* Long memory latency

» Load/store unit stall
« No more memory requests can be generated
 Limited memory throughput

Need of Improving Latency Tolerance

M Long-latency RAW Stall W Load/Store Unit Stall O Other Stalls

o 100% Latency-sensitive . Latency-insensitive

S 80% :

S =Ml

e 60% T
o

2 40%

5 il]

5 I'Ihns

s 0% 3
ugi SG LI MC WP KM MT LB ST AE SF MQ SD

Long memory latency
23% of cycles stalled

More TLP Improves Performance

= Better latency tolerance by interleaving more threads

@ Performance
1.2

1.1

1
0.9
0.8
0.7
0.6 I
0.5

Baseline TB16
Active Thread Blocks / Core

Relative Performance

Relative Performance

Cost of Increasing Thread Parallelism

= Better latency tolerance by interleaving more threads

= Need more registers/scratchpads for thread contexts

1.2
1.1

1
0.9
0.8
0.7
0.6
0.5

@ Performance

Baseline
Active Thread Blocks / Core

TB16

[Registers M Scratchpad

Baseline TB16
Active Thread Blocks / Core

Relative Performance

Cost of Increasing Thread Parallelism

= Better latency tolerance by interleaving more threads
= Need more registers/scratchpads for thread contexts
= Speedup diminishes as thread increases

@ Performance [Registers M Scratchpad
1.2 350
+4.0%
1.1 +6. 7% 300
om
1 ; 250 Ix
0.9 +37% ¥ 200
()
0.8 @ 150 1.5x
(@]
0.7 & 100
0.6 50 . I
0.5 0
Baseline TB16 Baseline TB16

Active Thread Blocks / Core Active Thread Blocks / Core

Cost of Increasing Thread Parallelism

Can we improve latency hiding
without adding more threads?

Cost of Increasing Thread Parallelism

Can we improve latency hiding
without adding more threads?

Exploit instruction-level parallelism!

Where Is Instruction-level Parallelism?

ld.global
add

mul
set.lt
Srd br
l1d.global
add

mul
set.lt
Srd br

$ro0,
$r2,
$ro,
sr4,
0x80
$xr0,
$r2,
$ro,
s$r4,
0x80

[Srl]
Sr2, #1
Sr0, Sro
Sr2, Sr5

[Srl]
Sr2, #1
Sr0, Sré6
Sr2, Srb

Where Is Instruction-level Parallelism?

Stall N

Appears
past branch

ld.global
add

mul
set.lt
Srd br
l1d.global
add

mul
set.lt
Srd br

$r0, [Srl]
Sr2, Sr2, #1
Sro, $r0, Sro

$r4[$r2, $r5 Y,

0x80

$Sr0, [Srl]
Sr2, Sr2, #1
Sr6, $r0, Sro

Srd, Sr2, Sr5 <)

0x80

]
]
L *
......
]
L]

s3%e
.
‘‘‘‘‘

“
o*
. *
“
-

Long-latency
independent

Where Is Instruction-level Parallelism?

Multiplf/

Warps

Stall N

Appears

past branch

v
....

.
.
bs* o

“‘
o

1. Long-latency

“? independent

1d.global Sr0, [Srl]
14 _~lnhal Sr0 [Sv1]
ld.global Sr0, [Srl]
add $r2, Srz2, #1
mul Sr6, $r0, Sro
set.lt Srd, S$r2, Srd5 -l
Srd br 0x80 .
T 1ld.global $r0, [$rl] »
add sr2, Sr2, #1 -
—| mul Sro, $r0, S$Sro6 o
set.lt $rd, $r2, $r5 [
| Srd br 0x80 :

Where Is Instruction-level Parallelism?

= Rescheduling required to exploit instruction-level parallelism

= Hardware schedulers may be too expensive for multiple threads

Execution
orcall

ld.global

add
mul
set.lt
Srd br

l1d.global

add
mul
set.lt
Srd br

$ro,
$r2,
$ro,
sr4,
0x80
$xr0,
$r2,
$ro,
s$r4,
0x80

[Srl]
Sr2, #1
Sr0, Sro
Sr2, Sr5

[Srl]
Sr2, #1
Sr0, Sré6
Sr2, Srb

S—

* Producer-consumer correctness between

|d and mul ignored for illustration

Long-latency
independent

Solution: Warp Pre-execution

» |dea: Skip long-latency dependent instructions while maintaining
In-order semantics

Solution: Warp Pre-execution

» |dea: Skip long-latency dependent instructions while maintaining
In-order semantics

* P-mode (Pre-execution mode)
« At long-latency stall point, “Switch” warp to P-mode
« “Skip” instructions in long-latency dependence chain
« Execute long-latency independent instructions

Solution: Warp Pre-execution

» |dea: Skip long-latency dependent instructions while maintaining
In-order semantics

* P-mode (Pre-execution mode)
« At long-latency stall point, “Switch” warp to P-mode
« “Skip” instructions in long-latency dependence chain
« Execute long-latency independent instructions

* N-mode (Normal execution mode)
« “Resume” warp at stall point after completion of long-latency operation
« Execute long-latency dependent instructions

e ™
Key: Keep in-order
Fetch-decode-issue

Warp Pre-execution

Warp mode: Normal (N)

ld.global $r0, [Sr2] N-Scoreboard || N-Stack
add $r2, $r2, #1
mu 1l Sr6, $r0, Sro
set.lt Srd4, Sr2, Srb5
Sr4 br 0x80 i
ld.global $Sr0, [Sr2] P-Scoreboard || P-Stack
add Sr2, Sr2, #1
mu 1l Sr6, $r0, Sro
set.lt srd, Sr2, Sr5
Sr4 br 0x80
P-queue
Key modifications: A

e Each warp has “mode” (Normal and Pre-ex)

e Scoreboard/SIMT Stacks for each mode

* P-queue: Records pre-executed instructions
in program order Head

Warp Pre-execution

Warp mode: Normal (N)

dld-global $r0, [Sr2] N-Scoreboard || N-Stack
Long-latency $r0 (Long) 1111

Inst.

P-Scoreboard || P-Stack

P-queue

Head

Warp Pre-execution

Warp mode: ()
ld.global $r0, [Sr2] N-Scoreboard || N-Stack
add Sr2, Sr2, #1 Sr0 (Long) 1111
ol $r6, $r0, 5$ré

P-Scoreboard || P-Stack
Sr0 (Long) 1111

P-queue

Long-latency dependent detected
- Switch from N-mode to P-mode

Head

Warp Pre-execution

Warp mode: Pre-execution (P)

ld.global Sr0, [$Sr2]
add $Sr2, Sr2, #1
[«

-Yﬂ'l'l—l (A SN
I L '\lJ_I_U, Y-l-v,

In P-mode, instructions dependent to

in-flight long-latency operation are
skipped

N-Scoreboard || N-Stack
Sr0 (Long) 1111
P-Scoreboard || P-Stack
Sr0 (Long) 1111

Sr6 (Skip)
P-queue

Head

Warp Pre-execution

Warp mode: Pre-execution (P)

ld.global Sr0, [$Sr2]

add Sr2, Sr2, #1

mi1] [P S <

o P L Oy YL Uy L O
#set.lt Srd, Sr2, $r5

In P-mode, executed instructions
are recorded in P-queue

N-Scoreboard || N-Stack
Sr0 (Long) 1111
P-Scoreboard || P-Stack
Sr0 (Long) 1111

Sr6 (Skip)
P-queue
set.lt

Head

Warp Pre-execution

Warp mode: Pre-execution (P)

1ld.global $r0, [$r2] N-Scoreboard || N-Stack
add Sr2, Sr2, #1 Sr0 (Long) 1111
g Sr6,—Sr0,—S5r6

set.lt Srd4, Sr2, Srb5

Sr4 br 0x80

P-Scoreboard || P-Stack
Sr0 (Long) 1111
Sr6 (Skip) 1100

0011
P-queue

Divergent state handled using P-stack

=» P-mode continues beyond branches

No branch speculation ot It

=>» Stop at dependent branch

Head

Warp Pre-execution

Warp mode: Pre-execution (P)

ld.global $x0, [Sr2] N-Scoreboard || N-Stack
add $r2, Sr2, #1 $r0 (Long) 1111
FRgt Sr6,—Sr0,—S5r6
set.lt Srd4, Sr2, Sr5
Sr4 br 0x80

ﬂld.global $xro0, [$r2]ik P-Scoreboard || P-Stack

$r0 (Skip) 1111
Sr6 (Skip) 1100
0011

P-queue

In P-mode, loads are used as accurate
prefetch (treated as skipped)

set.lt

Head

Warp Pre-execution

Warp mode: Pre-execution (P)

ld.global $r0, [$r2] N-Scoreboard || N-Stack
add Sr2, Sr2, #1 Sr0 (Long) 1111
FRgt Sr6,—Sr0,—S5r6
set.lt Srd4, Sr2, Srb5
$Srd br 0x80
ld.global $roO, [$r2]ik P-Scoreboard || P-Stack
add Sr2, Sr2, #1 Sr0 (Skip) 1111
) Sr6—$£0—56 $r6 (Skip) 1100
0011
P-queue
2"d instance of mul is also skipped add
set.lt

Head

Warp mode: Pre-execution (P)

Warp Pre-execution

ld.global Sr0, [$Sr2]
add $r2, $r2, #1
mi11] A &N [« A
o T P L Oy YL Uy L O
set.lt Srd4, Sr2, Srb5
Srd br 0x80
ld.global $r0, [$r2]¥r
add Sr2, Sr2, #1
m11] [« A & [«
o oL Oy YL Uy, v L O
-Set.lt Srd4, Sr2, S$Srb5

2"d instance of set.It pushed to P-queue
P-queue can hold multiple instances of
an instruction in the presence of loops

N-Scoreboard || N-Stack
Sr0 (Long) 1111
P-Scoreboard || P-Stack
SrO (Skip) 1111
Sr6 (Skip) 1100

0011
P-queue
set.lt
add
set.lt

Head

Warp Pre-execution

Warp mode: ()
ld.global $r0, [Sr2] N-Scoreboard || N-Stack
add Sr2, Sr2, #1 Sr0 (Long) 1111

-mul sr6, $r0, Sré6

P-Scoreboard || P-Stack
Sre il rig) 1112

SO (SKP) | 50
0011
P-queue
. t.It
After 15t Id.global completion, >
add

switch to N-mode and continues

from the original next instruction set.lt
Head

Warp Pre-execution

Warp mode: Normal (N)

ld.global Sr0, [$Sr2]

add $Sr2, Sr2, #1
mul $Sr6, $r0, Sré6
#set.lt Srd, $r2, Sr5

set.It was pre-executed

 Popped from P-queue head

* No re-execution, result reused
immediately

N-Scoreboard

N-Stack
1111

P-Scoreboard

P-Stack

P-queue

set.lt

add

set.lt

Head

Warp Pre-execution

Warp mode: Normal ()

ld.global Sr0, [$Sr2]

add $r2, Sr2, #1

mul Sr6, $r0, Sro
set.1lt Srd4, Sr2, Sr5
Srd4 br 0x80

m) 1d.global $r0, [$r2]¥r

Prefetches generated for 2" Id.global
will make cache hits

N-Scoreboard || N-Stack
Sr0 1111
(Cache hit) 1100
0011

P-Scoreboard || P-Stack

P-queue

set.lt

add

Head

Warp Pre-execution

Warp mode: Normal ()

ld.global Sr0, [$Sr2]

add $r2, Sr2, #1
mu 1l Sr6, $r0, Sro
set.lt Srd4, Sr2, Sr5
Srd4 br 0x80
ld.global $r0, [$r2]¥r
‘add $r2, Srz2, #1

The result of 2" add also reused
through P-queue

N-Scoreboard || N-Stack
1111
1100
0011
P-Scoreboard || P-Stack
P-queue

set.lt

add

Head

Problem: WAR and WAW Hazards

ld.global $r0, [$r2]

N add Srl, Srl, #4
FREE S¥r3,—Sr2—5rQ
P sub Sr2, Sr4, Srb

" sub.S$r2 must be written to register file after mul. $r2
IS read

* sub can be pre-executed, but the result cannot be
updated until mul.S$r2 Is read!

Solution: Register Renaming

ld.global $r0, [Srl]

N
add Srl, Srl, #4
» Sr2 renamed to Sp0
i Em S $r},/$?/2,$r0 » °P
P sub i5p0s Sr4, $rb

» |dea: Store pre-executed results to rename registers

* In P-mode, source and destination registers renamed
 mul.S$r2 not overwritten, sub.$r2 renamed to $p0
« Subsequent $r2 renamed to Sp0
» Values propagated via rename registers in P-mode

Solution: Register Renaming

N ld.global $r0, [Srl]
add Srl, Srl, #4

el $r},/$?/2,$r0 » Sr2 renamed to Sp0
p sub iSp0,; Srd, Sr5

set.lt Srd, i Sp07—$+5— $r2 renamed to 5p0
N LS :iféﬁ $r2, Sr0 Result read from SpO,

sub iPr2, Sr4, updated to $r2

» |dea: Store pre-executed results to rename registers

* In P-mode, source and destination registers renamed
 mul.S$r2 not overwritten, sub.$r2 renamed to $p0
« Subsequent $r2 renamed to Sp0
« Values propagated via rename registers in P-mode

* In N-mode, commit renamed registers in-order (reuse)
* Pre-computed sub.S$r2 isread from rename register Sp0

Warp Pre-execution

Warp mode: Normal (

)

ld.global $r0, [Sr2] N-Scoreboard || N-Stack

add $r2/ $r2r #1 1111
mul Sr6, Sr0, Sré6
#set.lt Srd, $r2, $r5

P-Scoreboard || P-Stack

P-queue
Inst. ID Arch. Dst ID Rename Regis.’E.er ID set.lt
set.lt Srd $p100 | e | add
More details in paper vl set.lt

Do We Need More Registers?

100%
80%
60%
40%
20%

Register Utilization (%)

0%

W Baseline M P-mode

MU BT BP LB AE LK SF S2 ST SG KM SVMC PFMQDC S1 CF FW LP DWWP BF FD SD MT LI NW

» GPUs underutilize register file

» Thread block granularity register management

» Unused registers for P-mode rename registers

 Increased register utilization (73% - 86%)

Relative Performance

Performance and Storage

= Up to +38% for latency-sensitive top 50% applications

= Only 10% storage overhead

1.5
1.4
1.3
1.2
1.1

[N

0.9
0.8

I Performance

+38%

+22% +22%
+19% I I

Base 2xTLP 2xTLP P-modeP-mode
+OptTB +OptTB

Outperforms
2X more threads

« Combined with OptTB (Optimized thread block count)

@ On-chip Storage B P-mode Overhead

250

Storage/SM (KB)
= = N
o U o
S o ©o

Ul
o

o

2X
I I 1.1x

Base 2xTLP 2xTLP P-modeP-mode
+OptTB +OptTB

Less storage
overhead

P-mode Instruction Coverage

[Pre-execute/Prefetch W Skipped

2

* Pre-execution covers 38% of dynamic instructions
* 16% useful instructions (pre-execution/prefetch)
« 22% skipped

= Up to 90% coverage, up to 60% useful pre-execution

100%
80%
60%
40%
20%

0%

Ll D—
KM m—
SV I
SG I
MC
BT I
Lp I
FD

LB

DW Hmmm

LK
FW

DC I

S2 mmm
MU

BP m

ST mm

S1 W

PF HE

BF I

NW N

AE I
SF 1

= Implication: GPU apps may have further ILP to exploit

MQ |
MT |

SD |

Conclusion

= Scaling TLP for higher latency tolerance demands high
storage cost

= Qur solution: Warp pre-execution
« EXxploit instruction-level parallelism
« Retain in-order fetch-decode-scheduling

» Challenges
« WAW and WAR hazards
« Solution: Register renaming

* Pre-execution shows promising results

» 38% performance improvement
(combined with TLP throttling)

Thank you for listening!

R YONSEI =2 USC University of

§ UNIVERSITY 11V Southern California

Warped-Preexecution: A GPU Pre-execution
Approach for Improving Latency Hiding

Keunsoo Kim, Sangpil Lee, Myung Kuk Yoon,
*Gunjae Koo, Won Woo Ro, *Murali Annavaram

Yonsei University
*University of Southern California

