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ABSTRACT
We apply deep learning to the problem of discovery and
detection of characteristic patterns of physiology in clinical
time series data. We propose two novel modifications to
standard neural net training that address challenges and ex-
ploit properties that are peculiar, if not exclusive, to medical
data. First, we examine a general framework for using prior
knowledge to regularize parameters in the topmost layers.
This framework can leverage priors of any form, ranging
from formal ontologies (e.g., ICD9 codes) to data-derived
similarity. Second, we describe a scalable procedure for
training a collection of neural networks of different sizes but
with partially shared architectures. Both of these innova-
tions are well-suited to medical applications, where available
data are not yet Internet scale and have many sparse out-
puts (e.g., rare diagnoses) but which have exploitable struc-
ture (e.g., temporal order and relationships between labels).
However, both techniques are sufficiently general to be ap-
plied to other problems and domains. We demonstrate the
empirical efficacy of both techniques on two real-world hos-
pital data sets and show that the resulting neural nets learn
interpretable and clinically relevant features.

Categories and Subject Descriptors
J.3 [Life and Medical Sciences]: Health; I.5.1 [Pattern
Recognition]: ModelsNeural nets
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Medical informatics; Phenotyping; Deep learning; Multivari-
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1. INTRODUCTION
The increasing volume and availability of stored digital

health data offers an unprecedented opportunity to improve
future care by learning from past patient encounters. One
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important step towards this goal is learning richer, data-
driven descriptions of illness. This field of research, known
as computational phenotyping, has attracted many machine
learning and data mining researchers, applying a broad set of
methods to learn meaningful representations from a variety
of data sources and types [39, 42, 17]. Most work on phe-
notyping from clinical time series has focused on variations
of Gaussian processes and related models [27, 22] and focus
on discovering cluster structure (e.g., disease subtypes).

Learning robust representations of human physiology is es-
pecially challenging because the underlying causes of health
and wellness span body systems and physiologic processes,
creating complex and nonlinear relationships among observed
measurements (e.g., patients with septic shock may exhibit
fever or hypothermia). Whereas classic shallow models (e.g.,
cluster models) may struggle in such settings, properly trained
deep neural networks can often discover, model, and disen-
tangle these types of latent factors [5] and extract meaning-
ful abstract concepts from simple data types [20]. Because
of these properties, deep learning has achieved state of the
art results in speech recognition [15] and computer vision
[38] and seems well-suited to computational phenotyping.

Recent work has demonstrated the potential of deep learn-
ing to derive insight from clinical data [21, 19, 37]. Nonethe-
less, the practical reality of neural networks remains chal-
lenging, and we face many open questions when applying
them to a new problem. For example, do we have enough
data? Deep learning’s success is often associated with mas-
sive data sets of millions of examples [32, 11], but in medicine
“big data”often means an Electronic Health Records (EHRs)
database [14, 22] with only tens of thousands of cases. Other
questions regard data preprocessing, model architecture, train-
ing procedures, etc. Answering these questions often re-
quires time-consuming trial and error.

In addition, there is a wealth of existing medical knowl-
edge that can inform analytics. Medicine is replete with on-
tologies, including SNOMED-CT [10], UMLS [9], and ICD-9
[23], whose structured forms are readily exploited by compu-
tational methods. Such ontologies have proven very useful
for search, data mining, and decision support [13, 1]. For
machine learning, such resources represent a source of poten-
tially useful biases that can be used to accelerate learning.
Combining structured knowledge with data-driven methods
like deep learning presents a major challenge but also a sig-
nificant opportunity for medical data mining.

In this paper we explore and propose solutions to some
of the challenges that researchers face when utilizing deep
learning to discover and detect significant physiologic pat-



terns in critically ill patients. By exploiting unique prop-
erties of both our domain (e.g., ontologies) and our data
(e.g., temporal order in time series), we can improve the
performance of our neural networks and make the training
process more efficient. What is more, we show that each part
of our framework addresses more general research challenges
in deep learning. Our main contributions are as follows:

• We formulate a prior-based regularization framework
for guiding the training of multi-label neural networks
using medical ontologies and other structured knowl-
edge. Our formulation is based on graph Laplacian pri-
ors [36, 40, 2, 3], which can represent any graph struc-
ture and incorporate arbitrary relational information.
We apply graph Laplacian priors to the problem of
training neural networks to classify physiologic time se-
ries with diagnostic labels, where there are many labels
and severe class imbalance. What is more, this frame-
work is general enough to incorporate data-driven (e.g.,
comorbidity patterns) and hybrid priors.

• We propose an efficient incremental training proce-
dure for building a series of neural networks that de-
tect physiologic patterns of increasing length. We use
the parameters of an existing neural net to initialize
the training of a new neural net designed to detect
longer temporal patterns. This technique exploits both
the well-known low rank structure of neural network
weight matrices [12] and structure in our data domain,
including temporal smoothness.

• We apply modern causal inference techniques [18] to
the problem of analyzing and interpreting hidden layer
representations of deep neural networks. We show em-
pirically that these tools hold a great deal of promise
for understanding the behavior of complex deep mod-
els and for helping to disentangle distributed represen-
tations. We use these methods to identify features that
are most strongly associated with different diagnoses
and to show that they often capture known pathophys-
iologies in critically ill patients.

We demonstrate the empirical efficacy of our deep learn-
ing framework using two real world clinical time series data
sets. We show that our prior-based regularization frame-
work improves performance on a very challenging multi-label
classification task (predicting ICD-9 diagnostic codes) and
that it is beneficial to incorporate both domain knowledge
and data-driven similarity. We demonstrate that our incre-
mental training procedure leads to faster convergence during
training and learns features that are useful for classification
and competitive with classically trained neural nets. We
provide a thorough analysis of learned features that shows
that the neural nets learn patterns that are interpretable
and often associated with known critical illnesses. We finish
by discussing the potential of this line of work for advancing
research in both medical informatics and deep learning.

2. RELATED WORK
There is a growing body of work on computational pheno-

typing [42, 17], some of it using deep learning. [21] describes
one of the first applications of modern deep learning to clin-
ical time series. The authors use autoencoders to learn fea-
tures from longitudinal clinical measurement time series and

show that these features are both interpretable and useful
for clustering and classifying patients. They focus on a nar-
row set of diseases and do not experiment with windows of
different sizes or use supervised finetuning to learn more dis-
criminative features. Although [22] do not use deep learning,
they share similar goals: discovering meaningful physiologic
patterns (or physiomes) in multivariate clinical time series.
They formulate this as a clustering problem and apply a
Gaussian mixture model. The resulting clusters are corre-
lated with outcomes and known critical illnesses.

The application of deep learning to other sequential and
temporal data provides a useful context for our work. Deep
learning approaches have achieved breakthrough results in
speech recognition [15]. We expect similar results (with time
and effort) in more general time series data domains, in-
cluding health. In natural language processing, distributed
representations of words, learned from context using neural
networks, have provided huge boosts in performance [33].
Our use of neural networks to learn representations of time
series is similar: a window of time series observations can be
viewed as the context for a single observation within that
window.

Classic learning theory results show that the amount of
training data required increases as the complexity of the
learning algorithm increases [34, 4]. Thus, the flexibility of
neural networks poses a challenge outside of traditional do-
mains with access to massive Internet-scale data sets. This
is especially true for medical applications where many pre-
dictive tasks suffer from severe class imbalance since most
conditions are inherently. One possible remedy is to use side
information, such as class hierarchy, as a rich prior to pre-
vent overfitting and improve performance. However,there is
still limited work in the deep learning community explor-
ing the utility of such priors for training neural networks.
To the best of our knowledge, [31] is the first work that
combines a deep architecture with a tree-based prior to en-
code relations among different labels and label categories.
Nonetheless, this work is limited to modeling a restricted
class of side information.

Our work also has clear and interesting connections to on-
going research into efficient methods for training deep archi-
tectures. The renaissance of neural networks was launched
by unsupervised pretraining [16, 6, 25]. The classic pretrain-
ing procedure can be viewed as a simple greedy method
for building a deep architecture vertically, one layer at a
time. Our incremental training method can be viewed as a
greedy method for building deep architectures horizontally
by adding units to one or more layers.

Our incremental training framework is also connected to
two recent papers: [41] describe an incremental approach
to feature learning in an online setting. They use a two
step process to train new features: first, they train only the
weights of the new features using a subset of training sam-
ples; then they retrain all weights on the full data. This
approach outperforms fixed neural networks in streaming
settings where the data and label distributions drift. There
is an obvious parallel with our work, but we focus on chang-
ing input size, rather than data drift. Also, they do not
analyze the convergence properties of their training proce-
dure. [12] describe an approach for predicting parameters of
neural networks by exploiting the smoothness of input data
and the low rank structure of weight matrices. They de-
compose each weight matrix into a product of two low rank



matrices. One represents the learned weights for a subset of
parameters. The other is a kernel similarity matrix, either
designed using domain knowledge or estimated from data
(using, e.g., covariance). In this way, parameter learning
becomes a kernel regression problem. We use a related idea
in our parameter initialization scheme: we exploit similar-
ity between new inputs and old inputs to estimate initial
parameter values prior to training.

3. METHODOLOGY
In this section, we describe our framework for performing

effective deep learning on clinical time series data. We begin
by discussing the Laplacian graph-based prior framework
that we use to perform regularization when training multi-
label neural networks. This allows us to effectively train
neural networks, even with smaller data sets, and to exploit
structured domain knowledge, such as ontologies. We then
describe our incremental neural network procedure, which
we developed in order to rapidly train a collection of neural
networks to detect physiologic patterns of increasing length.

3.1 General Framework
Given a multivariate time series with P variables and

length T , we can represent it as a matrix X ∈ RP×T . A
feature map for time series X is a function g : RP×T 7→ RD

that maps X to a vector of features x ∈ RD useful for ma-
chine learning tasks like classification, segmentation, and in-
dexing. Given the recent successes of deep learning, it is
natural to investigate its effectiveness for feature learning in
clinical time series data.

Suppose we have a data set of N multivariate time series,
each with P variables and K binary labels. Without loss of
generality, we assume all time series have the same length T .
After a simple mapping that stacks all T column vectors in
X to one vector x, we have N labeled instances {xi,yi}Ni=1,
where xi ∈ RD,yi ∈ {0, 1}K , D = PT . The goal of multi-
label classification is to learn a function f which can be used
to assign a set of labels to each instance xi such that yij = 1
if jth label is assigned to the instance xi and 0 otherwise.

We use a deep feed-forward neural network, as shown in
Figure 1a, with L hidden layers and an output prediction
layer. We use Θ = (Θhid,B) to denote the model param-

eters. Θhid = {〈W (`), b(`)〉}L`=1 denotes the weights for the

hidden layers (each with D(`) units), and the K columns

βk ∈ RD(L)

of B = [β1β2 · · ·βK ] are the prediction param-

eters. For convenience we denote h(0) = x and D(0) = D.
Throughout this paper, we assume a neural network with

fully connected layers, linear activation (W (`)h(`−1) + b(`))
and sigmoid nonlinearities (σ(z) = 1/(1 + exp{−z})). Be-
cause of the modest size of our data, we pretrain each hidden
layer as a denoising autoencoder (DAE) [35] by minimizing
the reconstruction loss using stochastic gradient descent. In
the supervised training stage, without any regularization,
we treat multi-label classification as K separate logistic re-
gressions, so the neural net has K sigmoid output units. To

simplify the notation, let hi = h
(L)
i ∈ RD(L)

denote the
output of top hidden layer for each instance xi. The con-
ditional likelihood of yi given xi and model parameters Θ

can be written as:

log p(yi|xi,Θ) =

K∑
k=1

[
yik log σ(β>k hi) + (1− yik) log(1− σ(β>k hi))

]
Our framework can easily be extended to other network

architectures, hidden unit types, and training procedures.

3.2 Prior-based regularization
Deep neural networks are known to work best in big data

scenarios with many training examples. When we have ac-
cess to only a few examples of each class label, incorporating
prior knowledge can improve learning. [31] utilize tree-based
prior, constructed from a hierarchy over image labels, to im-
prove classification performance for smaller data sets with
rare labels. However, the tree-based prior can only model
a very restricted class of side information. In practice, we
might have other types of prior information as well, such
as pairwise similarity or co-occurrence. Thus, it is useful
to have a more general framework able to incorporate a
wider range of prior information in a unified way. Graph
Laplacian-based regularization [36, 40, 2, 3] provides one
such framework and is able to incorporate any relational in-
formation that can be represented as a (weighted) graph,
including the tree-based prior as a special case.

Given a matrix A ∈ RK×K representing pairwise con-
nections or similarities, the Laplacian matrix is defined as
L = C−A, where C is a diagonal matrix with kth diagonal
element Ck,k =

∑K
k′=1(Ak,k′). L has the following property

that makes it interesting for regularization. Given a set of

K vectors vector of parameters βk ∈ RD(L)

and :

tr(β>Lβ) =
1

2

∑
1≤k,k′≤K

Ak,k′‖βk − βk′‖22, (1)

where tr(·) represents the trace operator. According to Equa-
tion 1, the graph Laplacian regularizer enforces the param-
eters βk and βk′ to be similar, proportional to Ak,k′ . The
Laplacian regularizer can be combined with other regulariz-
ers R(Θ) (e.g., the Frobenius norm ‖W (`)‖2F to keep hidden
layer weights small), yielding the regularized loss function:

L =−
N∑
i=1

log p(yi|xi,Θ) + λR(Θ) +
ρ

2
tr(β>Lβ)

where ρ, λ > 0 are the Laplacian and other regularization
hyperparameters, respectively. Note that the graph Lapla-
cian regularizer is a quadratic in terms of parameters and so
does not add significantly to the computational cost.

The graph Laplacian regularizer can represent any pair-
wise relationships between parameters. Here we discuss
how to use different types of priors and the correspond-
ing Laplacian regularizers to incorporate both structured
domain knowledge (e.g., label hierarchies based on medical
ontologies) and empirical similarities.

Structured domain knowledge as a tree-based prior.
The graph Laplacian regularizer can represent a tree-based
prior based on hierarchical relationships found in medical on-
tologies. In our experiments, we use diagnostic codes from
the Ninth Revision of the International Classification of Dis-
eases (ICD-9) system, which are widely used for classifying
diseases and coding hospital data. The three digits (and two
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Figure 1: (a) A miniature illustration of the deep network with the regularization on categorical structure. The regularization
is applied to the output layer of the network. (b) The co-occurrence matrix in the ICU dataset.

optional decimal digits) in each code form a natural hierar-
chy including broad body system categories (e.g., Respira-
tory), individual diseases (e.g., Pneumonia), and subtypes
(e.g., viral vs. Pneumococcal pneumonia). Figure 1a illus-
trates two levels of the hierarchical structure of the ICD-9
codes. When using ICD-9 codes as labels, we can treat their
ontological structure as prior knowledge. If two diseases be-
long to the same category, then we add an edge between
them in the adjacency graph A.

Data-driven similarity as a prior. Laplacian regular-
ization is not limited prior knowledge in the form of trees or
ontologies. It can also incorporate empirical priors, in the
form of similarity matrices, estimated from data. For exam-
ple, we can use the co-occurrence matrix A ∈ RK×K whose
elements are defined as follows:

Ak,k′ =
1

N

N∑
i=1

I(yikyik′ = 1)

where N is the total number of the training data points, and
I(·) is the indicator function. Given the fact that Ak,k′ is
the maximum likelihood estimation of the joint probability
P{yik = 1, yik′ = 1}, regularization with the Laplacian con-
structed from the co-occurrence similarity matrix encour-
ages the learning algorithm to find a solution for the deep
network that predicts the pair-wise joint probability of the
labels accurately. The co-occurrence similarity matrix of 19
categories in ICU dataset is shown in Figure 1b.

3.3 Incremental training
Next we describe our algorithm for efficiently training a

series of deep models to discover and detect physiologic pat-
terns of varying lengths. This framework utilizes a simple
and robust strategy for incremental learning of larger neural
networks from smaller ones by iteratively adding new units
to one or more layers. Our strategy is founded upon intelli-
gent initialization of the larger network’s parameters using
those of the smaller network.

Given a multivariate time series X ∈ RP×T , there are two
ways in which to use feature maps of varying or increasing
lengths. The first would be to perform time series classi-
fication in an online setting in which we want to regularly
re-classify a time series based on all available data. For ex-

ample, we might would want to re-classify (or diagnose) a
patient after each new observation while also including all
previous data. Second, we can apply a feature map g de-
signed for a shorter time series of length TS to a longer time
series of length T > TS using the sliding window approach:
we apply g as a filter to subsequences of size TS with stride
RS (there will be T−TS+1

RS
). Proper choice of window size

TS and stride RS is critical for producing effective features.
However, there is often no way to choose the right TS and
RS beforehand without a priori knowledge (often unavail-
able). What is more, in many applications, we are interested
in multiple tasks (e.g., patient diagnosis and risk quantifi-
cation), for which different values of TS and RS may work
best. Thus, generating and testing features for many TS and
RS is useful and often necessary. Doing this with neural nets
can be computationally expensive and time-consuming.

To address this, we propose an incremental training pro-
cedure that leverages a neural net trained on windows of size
TS to initialize and accelerate the training of a new neural
net that detects patterns of length T ′ = TS +∆TS (i.e., ∆TS

additional time steps). That is, the input size of the first
layer changes from D = PTS to D′ = D+d = PTS +P∆TS .

Suppose that the existing and new networks have D(1)

and D(1) + d(1) hidden units in their first hidden layers,
respectively. Recall that we compute the activations in our
first hidden layer according to the formula h(1) = σ(W (1)x+

b(1)). This makesW (1) an D(1)×D matrix and b(1) an D(1)-

vector; we have a row for each feature (hidden unit) in h(1)

and a column for each input in x. From here on, we will
treat the bias b(1) as a column in W (1) corresponding to a
constant input and omit it from our notation.

The larger neural network has a (D(1) + d(1)) × (D + d)

weight matrix W ′(1). The first D columns of W ′(1) corre-
spond exactly to the D columns of W (1) because they take
the same D inputs. In time series data, these inputs are the
observations in the same TS × P matrix. We cannot guar-

antee the same identity for the first D(1) columns of W ′(1),

which are the first D(1) hidden units of h′
(1)

; nonetheless, we
can make a reasonable assumption that these hidden units
are highly similar to h(1). Thus, we can think of construct-

ing W ′(1) by adding d new columns and d(1) new rows to
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Figure 2: Weight distributions for three layers of a neural network after pretraining (left three) and finetuning (right three).

Algorithm 1 Similarity-based Initialization

Input: Training data X ∈ RN×(D+d); existing weights

W (1) ∈ RD(1)×D; kernel function k(·, ·)
Output: Initialized weights ∆Wne ∈ RD(1)×d

1: for each new input dimension i ∈ [1, d] do
2: for each existing input dimension k ∈ [1, D] do
3: Let K[D + i, k] := k(X[·, D + i],X[·, k])
4: end for
5: Normalize K (if necessary)

6: for each existing feature j ∈ [1, D(1)] do

7: Let ∆Wne[j, i] :=
∑D

k=1 K[D + i, k]W (1)[j, k]
8: end for
9: end for

W (1). As illustrated in Figure 3, the new weights can be
divided into three categories.
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Figure 3: How adding various units changes the weights W .

• ∆Wne: D(1) × d weights that connect new inputs to
existing features.

• ∆Wen: d(1) ×D weights that connect existing inputs
to new features.

• ∆Wnn: d(1) × d weights that connect new inputs to
new features.

We now describe strategies for usingW (1) to choose initial
values for parameters in each category.

Similarity-based initialization for new inputs To
initialize ∆Wne, we leverage the fact that we can com-
pute or estimate the similarity among inputs. Let K be
a (D + d) × (D + d) kernel similarity matrix between the
inputs to the larger neural network that we want to learn.
We can estimate the weight between the ith new input (i.e.,
input D + i) and the jth hidden unit as a linear combina-
tion of the parameters for the existing inputs, weighted by

Algorithm 2 Gaussian Sampling-based Initialization

Input: Existing weights W (1) ∈ RD(1)×D

Output: Initialized weights ∆Wen ∈ Rd(1)×D, ∆Wnn ∈
Rd(1)×d

1: Let w̄ = 1

DD(1)

∑
i,j W

(1)[i, j]

2: Let s̄ = 1

DD(1)−1

∑
i,j(W

(1)[i, j]− w̄)2

3: for each new feature j ∈ [1, d(1)] do
4: for each existing input dimension i ∈ [1, D] do
5: Sample ∆Wne[j, i] ∼ N (w̄, s̄)
6: end for
7: for each new input dimension i ∈ [1, d] do
8: Sample ∆Wnn[j, i] ∼ N (w̄, s̄)
9: end for

10: end for

each existing input’s similarity to the ith new input. This
is shown in Algorithm 1.

Choice of K is a matter of preference and input type. A
time series-specific similarity measure might assign a zero
for each pair of inputs that represents different variables
(i.e., different univariate time series) and otherwise empha-
size temporal proximity using, e.g., a squared exponential
kernel. A more general approach might estimate similarity
empirically, using sample covariance or cosine similarity. We
find that the latter works well, for both time series inputs
and arbitrary hidden layers.

Sampling-based initialization for new features When
initializing the weights for Wen, we do not have the simi-
larity structure to guide us, but the weights in W (1) pro-
vide information. A simple but reasonable strategy is to
sample random weights from the empirical distribution of
entries in W (1). We have several choices here. The first
regards whether to assume and estimate a parametric dis-
tribution (e.g., fit a Gaussian) or use a nonparametric ap-
proach, such as a kernel density estimator or histogram. The
second regards whether to consider a single distribution over
all weights or a separate distribution for each input.

In our experiments, we found that the existing weights of-
ten had recognizable distributions (e.g., Gaussian, see Fig-
ure 2) and that it was simplest to estimate and sample from
a parametric distribution. We also found that using a single
distribution over all weights worked as well as, if not better
than, a separate distribution for each input.

For initializing weights in Wnn, which connect new inputs
to new features, we could apply either strategy, as long as we
have already initialized Wen and Wne. We found that esti-
mating all new feature weights (for existing or new inputs)

from the same simple distribution (based on W (1)) worked



Table 1: AUROC for classification.

Tasks No Prior Co-Occurrence ICD-9 Tree

Subsequence
All 0.7079± 0.0089 0.7169 ± 0.0087 0.7143± 0.0066
Categories 0.6758± 0.0078 0.6804 ± 0.0109 0.6710± 0.0070
Labels 0.7148± 0.0114 0.7241 ± 0.0093 0.7237± 0.0081

Episode
All 0.7245± 0.0077 0.7348 ± 0.0064 0.7316± 0.0062
Categories 0.6952± 0.0106 0.7010 ± 0.0136 0.6902± 0.0118
Labels 0.7308± 0.0099 0.7414 ± 0.0064 0.7407± 0.0070

best. Our full Gaussian sampling initialization strategy is
shown in Algorithm 2.

Initializing other layers This framework generalizes be-
yond the input and first layers. Adding d′ new hidden units

to h′
(1)

is equivalent to adding d′ new inputs to h′
(2)

. If we

compute the activations in h′
(1)

for a given data set, these

become the new inputs for h′
(2)

and we can apply both the
similarity and sampling-based strategies to initialize new en-

tries in the expanded weight matrix W ′(2). The same goes
for all layers. While we can no longer design special sim-
ilarity matrices to exploit known structure in the inputs,
we can still estimate empirical similarity from training data

activations in, e.g., h′
(2)

.
Intuition suggests that if our initializations from the pre-

vious pretrained values are sufficiently good, we may be able
to forego pretraining and simply perform backpropagation.
Thus, we choose to initialize with pretrained weights, then
do the supervised finetuning on all weights.

4. EXPERIMENTS
To evaluate our framework, we ran a series of classifica-

tion and feature-learning experiments using two collections
of clinical time series collected during the delivery of care
in intensive care units (ICUs) at large hospitals. In Sec-
tion 4.1, we demonstrate the benefit of using priors (both
knowledge- and data-driven) to regularize the training of
multi-label neural nets. In Section 4.2, we show that in-
cremental training both speeds up training of larger neural
networks and keeps classification performance. In Section
4.3, we perform a qualitative analysis of the learned fea-
tures, showing that neural nets can learn clinically signifi-
cant physiologic patterns. Finally, in Section 4.4 we show
that priors can help to disentangle the latent factors of vari-
ation modeled in the upper layer of the neural net.

Physionet Challenge 2012 Data. The first data set
comes from PhysioNet Challenge 2012 website [30] which is
a publicly available1 collection of multivariate clinical time
series from 8000 ICU units. Each episode is a multivari-
ate time series of roughly 48 hours and containing over 30
variables. These data come from one ICU and four spe-
cialty units, including coronary care and cardiac and gen-
eral surgery recovery units. We use the Training Set A sub-
set for which outcomes, including in-hospital mortality, are
available. We resample the time series on an hourly basis
and propagate measurements forward (or backward) in time
to fill gaps. We scale each variable to fall between [0, 1]. We
discuss handling of entirely missing time series below.

1http://physionet.org/challenge/2012/

ICU Data. The second data set consists of ICU clini-
cal time series extracted from the electronic health records
(EHRs) system of a major hospital. The original data set
includes roughly ten thousand episodes of varying lengths,
but we exclude episodes shorter than 12 hours or longer than
128 hours, yielding a data set of 8500 multivariate time se-
ries of a dozen physiologic variables, which we resample once
per hour and scale to [0,1]. Each episode has zero or more
associated diagnostic codes from the Ninth Revision of the
International Classification of Diseases (ICD-9). From the
raw 3-5 digit ICD-9 codes, we create a two level hierarchy of
labels and label categories using a two-step process. First,
we truncate each code to the tens position (with some spe-
cial cases handled separately), thereby merging related di-
agnoses and reducing the number of unique labels. Second,
we treat the standard seventeen broad groups of codes (e.g.,
460-519 for respiratory diseases), plus the supplementary V
and E groups as label categories. After excluding one cat-
egory that is absent in our data, we have 67 unique labels
and 19 categories.

We implemented all neural networks in Theano [8] as vari-
ations of a multilayer perceptron with five hidden layers (of
the same size) of sigmoid units. The input layer has PT
input units for P variables and T time steps, while the out-
put layer has one sigmoid output unit per label. Except
when we use our incremental training procedure, we initial-
ize each neural network by training it as an unsupervised
stacked denoising autoencoder (SDAE). We found this helps
significantly because our data sets are relatively small and
our labels are quite sparse.

4.1 Benefits of prior-based regularization
Our first set of experiments demonstrates the utility of

using priors to regularize the training of multi-label neural
networks, especially when labels are sparse and highly cor-
related or similar. From each time series, we extract all sub-
sequences of length T = 12 in sliding window fashion, with
an overlap of 50% (i.e., stride R = 0.5T ), and each sub-
sequence receives its episode’s labels (e.g., diagnostic code
or outcome). We use these subsequences to train a single
unsupervised SDAE with five layers and increasing levels of
corruption (from 0.1 to 0.3), which we then use to initialize
the weights for all supervised neural networks. The sparse
multi-label nature of the data makes stratified k-fold cross
validation difficult, so we instead randomly generate a series
of 80/20 random training/test splits of episodes and keep
the first five that have at least one positive example for each
label or category. At testing time, we measure classifica-
tion performance for both frames and episodes. We make
episode-level predictions by thresholding the mean score for
all subsequences from that episode.

http://physionet.org/challenge/2012/


(a) ICD-9 Tree. (b) ICD-9 shared category. (c) ICU co-occurrence. (d) Physionet co-occur.

Figure 4: Example priors for the ICU (a-c) and Physionet (d) data sets.
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Figure 5: Physionet classification performance.

The ICU data set contains 8500 episodes varying in length
from 12 to 128 hours. The above subsequence procedure
produces 50,000 subsequences. We treat the simultaneous
prediction of all 86 diagnostic labels and categories as a
multi-label prediction problem. This lends itself naturally
to a tree-based prior because of the hierarchical structure of
the labels and categories (Figure 4a, 4b). However, we also
test a data-based prior based on co-occurrence (Figure 4c).
Each neural network has an input layer of 156 units and five
hidden layers of 312 units each.

The Physionet data set contains 3940 episodes, most of
length 48 hours, and yields 27,000 subsequences. These data
have no such natural label structure to leverage, so we simply
test whether a data-based prior can improve performance.
We create a small multi-label classification problem consist-
ing of four binary labels with strong correlations, so that
similarity-based regularization should help: in-hospital mor-
tality (mortality), length-of-stay less than 3 days (los<3 ),
whether the patient had a cardiac condition (cardiac), and
whether the patient was recovering from surgery (surgery).
The mortality rate among patients with length-of-stay less
than 3 days is nearly double the overall rate. The cardiac
and surgery are created from a single original variable in-
dicating which type of critical care unit the patient was
admitted to; nearly 60% of cardiac patients had surgery.
Figure 4d shows the co-occurrence similarity between the
labels.

We impute missing time series (where a patient has no
measurements of a variable) with the median value for pa-

tients in the same unit. This makes the cardiac and surgery
prediction problems easier but serves to demonstrate the ef-
ficacy of our prior-based training framework. Each neural
network has an input layer of 396 units and five hidden layers
of 900 units each.

The results for Physionet are shown in Figure 5. We ob-
serve two trends, which both suggest that multi-label neu-
ral networks work well and that priors help. First, jointly
learning features, even without regularization, can provide
a significant benefit. Both multi-label neural networks dra-
matically improve performance for the surgery and cardiac
tasks, which are strongly correlated and easy to detect be-
cause of our imputation procedure. In addition, the addition
of the co-occurrence prior yields clear improvements in the
mortality and los<3 tasks while maintaining the high per-
formance in the other two tasks. Note that this is without
tuning the regularization parameters.

Table 1 shows the results for the ICU data set. We report
classification AUROC performance for both individual sub-
sequences and episodes, computed across all outputs, as well
as broken down into just labels and just categories. The pri-
ors provide some benefit but the improvement is not nearly
as dramatic as it is for Physionet. We face a rather ex-
treme case of class imbalance (some labels have fewer than
0.1% positive examples) multiplied across dozens of labels.
In such settings, predicting all negatives yields a very low
loss. We believe that even the prior-based regularization suf-
fers from the imbalanced classes: enforcing similar param-
eters for equally rare labels may cause the model to make
few positive predictions. However, the Co-Occurrence prior
does provide a clear benefit, even in comparison to the ICD-9
prior. As Figure 4c shows, this empirical prior captures not
only the category/label relationship encoded by the ICD-9
tree prior but also includes valuable cross-category relation-
ships that represent commonly co-morbid conditions.

4.2 Efficacy of incremental training
In these experiments we show that our incremental train-

ing procedure not only produces more effective classifiers
(by allowing us to combine features of different lengths)
but also speeds up training. We train a series of neural
networks designed to model and detect patterns of lengths
TS = 12, 16, 20, 24. Each neural net has PTS inputs (for P
variables) and five layers of 2PTS hidden units each. We
use each neural network to make an episode-level prediction
as before (i.e., the mean real-valued output for all frames)



and then combine those predictions to make a single episode
level prediction. We combine two training strategies:
Full: separately train each neural net, with unsupervised
pretraining followed by supervised finetuning.
Incremental: fully train the smallest (TS = 12) neural net
and then use its weights to initialize supervised training of
the next model (TS = 16). Repeat for subsequent networks.

We run experiments on a subset of the ICU data set, in-
cluding only the 6200 episodes with at least 24 hours and no
more than 128 hours of measurements. This data set yields
50000, 40000, 30000, and 20000 frames of lengths 12, 16, 20,
and 24, respectively.
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Figure 6: Training time for different neural networks for
full/incremental training strategies.

Table 2: AUROC for incremental training.

Size Level Full Inc Prior+Full Prior+Inc

16
Subseq. 0.6928 0.6874 0.6556 0.6581
Episode 0.7148 0.7090 0.6668 0.6744

20
Subseq. 0.6853 0.6593 0.6674 0.6746
Episode 0.7022 0.6720 0.6794 0.6944

24
Subseq. 0.7002 0.6969 0.6946 0.7008
Episode 0.7185 0.7156 0.7136 0.7171

We begin by comparing the training time (in minutes)
saved by incremental learning in Figure 6. Incremental
training provides an alternative way to initialize larger neu-
ral networks and allows us to forego unsupervised pretrain-
ing. What is more, supervised finetuning converges just as
quickly for the incrementally intialized networks as it does
for the fully trained network. As a result, it reduces train-
ing time for a single neural net by half. Table 2 shows
the that the incremental training reaches comparable per-
formance. Moreover, the combination of the incremental
training and Laplacian prior leads to better performance
than using Laplacian prior only.

4.3 Qualitative Analysis of Features
Figure 7 shows visualizations of two the significant physi-

ologic patterns learned by the neural network with the ICD-9
Tree prior. In each case, we used a feature selection proce-
dure to identify a subset of hidden units in the topmost
hidden layer that are most strongly associated with a par-
ticular label or category. We then found the 50 input sub-
sequences with the highest activations in those units and
plotted the mean trajectories for 12 of the 13 physiologic
variables. Figure 7a visualizes features that were found to

be causally related to the circulatory disease category using
the causal inference procedure described in the next section.
We see these features detect highly elevated blood pressure
and heart rate, as well as depressed pH. The features also de-
tect elevated end-tidal CO2 (ETCO2) and fraction-inspired
oxygen (FIO2), which likely indicate ventilation and severe
critical illness. Interesting, these features also detect ele-
vated urine output, and thus it is not surprising that these
features are also correlated with labels related to urinary
disorders. Figure 7b visualizes the patterns detected by
features that are highly correlated with septic shock. Un-
surprisingly, they detect very irregular physiology, includ-
ing extremely low Glascow Coma Score (indicating the pa-
tient may be unconscious), as well as evidence of ventilation.
These are all common symptoms of shock.

4.4 Causality Analysis
One of the main advantages of representation learning

with deep networks is their ability to disentangle factors
of variation present in the data but unobserved [5]. If the
algorithm does a good job of disentangling the underlying
factors, the subsequent learning will become much easier
since it counteracts the curse of dimensionality [7]. In ad-
dition, knowledge about one factor usually can improve the
estimation about another [26].

We apply tools from causal inference to investigate the
ability of neural nets (with and without prior-based regular-
ization) to disentangle factors of variation. This is a crit-
ical component of applying deep learning to medical data,
since decisions about treatment and care can significantly
impact patient lives and outcomes. Thus, discerning corre-
lation from true causal relationships is of vital importance.
To this end, we note that classic causal inference algorithms
require a set of causal priors to be available for the variable
to be able to cancel out the impact of spurious causation
paths [24, Chapter 3]. While we do not have such priors
available for our labels, we can still identify potential cau-
sation among the variables if they are not distributed ac-
cording to Gaussian distribution [28, 29, 18]. Our labels are
binary and hidden features logistic, and so they satisfy the
requirements of these algorithms.

We use causal analysis both quantitatively and qualita-
tively. For quantitative analysis, we informally compare the
strength of the detected causal relationships, as we do not
have access to the ground truth causal relationships. We
find the causal edges between each feature and label using
the state-of-the-art Pairwise LiNGAM algorithm from [18].
In order to find the magnitude of the causal edges, according
to the authors’ recommendation we fit a logistic regression
model to the features selected by Pairwise LiNGAM. The
results in Table 3 show the Frobenius norm of the causal
predictive weight matrix B̂ learned for the ICU dataset.
The results indicate a near 7% improvement when using the
co-occurrence prior over the baseline neural net, suggest-
ing that this prior may help disentangle latent factors in the
data and make it easier to find potential causal relationships
between learned features and outcomes.

5. CONCLUSION AND FUTURE WORK
The boom of digital health data from EHRs, wearable

health devices, and other sources presents an unprecedented
opportunity for future clinical research. Capitalizing on this
opportunity requires bringing to bear modern computational



(a) Phenotypic patterns for ICD-9 circulatory disease category (390-459).

(b) Phenotypic patterns for conditions related to septic shock (ICD-9 codes 990-995).

Figure 7: Example features learned from the ICU data.

Table 3: Magnitude of the causal relationships identified
by using the representations learned by the deep learning
algorithm.

No Prior Co-occurrence ICD-9 Tree

252.61 270.28 242.50

techniques from data mining and machine learning, and in
turn we must adapt these tools to solve problems unique to
medicine. In this paper, we demonstrated a robust suite of
tools for applying deep learning to the discovery and detec-
tion of significant physiology in hospital data. In doing so,
we address challenges presented by clinical time series and
exploit properties peculiar, if not unique, to these data.

First, we proposed using neural networks, trained on win-
dows of multivariate clinical time series, to discover phys-
iologic patterns associated with known clinical phenotypes
and predictive of health outcomes. Our experiments showed
that this simple approach can discover multivariate tempo-
ral patterns that are both predictive and interpretable.

Next we addressed the limited data and and sparse labels
common in EHRs by leveraging existing domain knowledge
(e.g., ontologies) as a prior during learning. We transform
such knowledge into a graph Laplacian, which can be used as
a simple, computationally efficient regularizer. Our experi-
mental results showed that priors can improve classification
performance and help to learn more clinically relevant fea-
tures. This framework also generalizes to data-driven and
other priors (e.g., empirical disease co-morbidity).

Then we proposed an efficient incremental learning frame-
work for discovery and detection of different length pat-

terns in clinical time series. Because longer temporal sub-
sequences overlap shorter ones, neural nets trained on these
patterns will have overlapping inputs and share structure
in higher layers. Armed with this insight, we developed a
simple but effective way to initialize a larger network’s pa-
rameters using an existing smaller network. Our empirical
results showed that this approach dramatically speeds up
training without hurting classification.

Finally, we demonstrated how state-of-the-art causal in-
ference algorithms can be used to help evaluate the physio-
logic representations learned by neural nets.

We believe that the ability to discover potentially mean-
ingful patterns of physiology and other symptoms from these
data via automated means will be an important tool for fu-
ture clinical studies. Our results demonstrate the promise
of learned representations for health “big data” problems.
We have several next steps. The first is to apply our frame-
work to a broader set of clinical tasks and data sets and to
work with experts to validate our findings. We are also in-
vestigating how to account for the noisy, unreliable nature
of diagnostic codes; one possibility is to use them for semi-
supervised, rather than fully supervised, learning. Finally,
we are very passionate about the idea of causal feature learn-
ing, in which the goal is to learn latent space representations
that enable more robust causal reasoning.
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