Machine Learning (CS 567)

Fall 2008

Time: T-Th 5:00pm - 6:20pm
Location: GFS 118

Instructor: Sofus A. Macskassy (macskass@usc.edu)
Office: SAL 216
Office hours: by appointment

Teaching assistant: Cheol Han (cheolhan@usc.edu)
Office: SAL 229
Office hours: M 2-3pm, W 11-12

Class web page:
http://www-scf.usc.edu/~csci567/index.html
Lecture 11 Outline

• Bayesian Learning
 – Probability theory
 – Bayesian Classification
So far: Discriminative Learning

- We want to distinguish between different classes based on examples of each class.
- Linear classifiers and decision trees generate separating planes between the classes.
- When a new instance needs to be classified, we check on which side of the decision boundaries it falls, and classify accordingly (deterministic).
- This is called discriminative learning, because we defined an explicit boundary that discriminates between the different classes.
- The classification algorithms studied so far (except logistic regression) fall into this category.
Next: *Generative* Learning

- A different idea: use the data to build a model for each of the different classes.
- To classify a new instance, we match it against the different models, then decide which model it resembles more.
- This is called *generative learning*.
- Note that we now categorize whether an instance is more or less likely to come from a given model.
- Also note that you can use these models to generate new data.
Learning Bayesian Networks: Naïve and non-Naïve Bayes

• Hypothesis Space
 – fixed size
 – stochastic
 – continuous parameters

• Learning Algorithm
 – direct computation
 – eager
 – batch
But first... basic probability theory

- Random variables
- Distributions
- Statistical formulae
Random Variables

- A random variable is a random number (or value) determined by chance, or more formally, drawn according to a probability distribution
 - The probability distribution can be estimated from observed data (e.g., throwing dice)
 - The probability distribution can be synthetic
 - Discrete & continuous variables

- Typical random variables in Machine Learning Problems
 - The input data
 - The output data
 - Noise

- Important concept in learning: The data generating model
 - E.g., what is the data generating model for:
 i) Throwing dice
 ii) Regression
 iii) Classification
 iv) For visual perception
Why have Random Variables?

- Our goal is to predict our target variable
- We are not given the true (presumably deterministic) function
- We are only given observations
 - Can observe the number of times a dice lands on 4
 - Can estimate the probability, given the input, that the dice will land on 4
 - But we don’t know where the dice will land
 - Can only make a guess to the most likely value of the dice, given the input.
Distributions

- The random variables only take on discrete values
 - E.g., throwing dice: possible values: \(v_i \in \{1,2,3,4,5,6\} \)
- The probabilities sum to 1
 \[
 \sum_i P(v_i) = 1
 \]
- Discrete distributions are particularly important in classification
- Probability Mass Function or Frequency Function (normalized histogram)

A “non fair” dice
Classic Discrete Distributions (I)

Bernoulli Distribution

- A Bernoulli random variable takes on only two values, i.e., 0 and 1.
- \(P(1)=p \) and \(P(0)=1-p \) or in compact notation:

\[
P(x) = \begin{cases}
p^x (1 - p)^{1-x}, & \text{if } x = 0 \text{ or } x = 1 \\
0, & \text{otherwise}
\end{cases}
\]

- The performance of a fixed number of trials with fixed probability of success (\(p \)) on each trial is known as a *Bernoulli trial*.

\[P(x)\text{ for } p=0.3\]
Binomial Distribution

- Like Bernoulli distribution: binary input variables: 0 or 1, and probability $P(1)=p$ and $P(0)=1-p$
- What is the probability of k successes, $P(k)$, in a series of n independent trials? ($n \geq k$)
- $P(k)$ is a binomial random variable:

$$P(k) = \binom{n}{k} p^k (1-p)^{n-k}$$

where

$$\binom{n}{k} = \frac{n!}{k!(n-k)!}$$

- Bernoulli distribution is a subset of the binomial distribution (i.e., $n=1$)
Binomial Distribution

Binomial p=0.5

Binomial p=0.25

Binomial p=0.1
Classic Discrete Distributions (III)

Multinomial Distribution

- A generalization of the binomial distribution to multiple outputs (i.e., multiple classes can be categorized instead of just one class)
- \(n \) independent trials can result in one of \(r \) types of outcomes, where each outcome \(c_r \) has a probability \(P(c_r) = p_r (p_r = 1) \).
- What is the probability \(P(n_1, n_2, \ldots, n_r) \), i.e., the probability that in \(n \) trials, the frequency of the \(r \) classes is \((n_1, n_2, \ldots, n_r) \)? This is a multinomial random variable:

\[
P(n_1, n_2, \ldots, n_r) = \binom{n}{n_1 n_2 \cdots n_r} p_1^{n_1} p_2^{n_2} \cdots p_r^{n_r}
\]

where

\[
\binom{n}{n_1 n_2 \cdots n_r} = \frac{n!}{n_1! n_2! \cdots n_r!}
\]
Continuous Probability Distributions

- The random variables take on real values.
- Continuous distributions are discrete distributions where the number of discrete values goes to infinity while the probability of each discrete value goes to zero.
- Probabilities become densities.
- Probability density integrates to 1.

\[
\int_{-\infty}^{+\infty} p(x) \, dx = 1
\]
Continuous Probability Distributions (cont’d)

- Probability Density Function $p(x)$

- Probability of an event:

$$P(a < x < b) = \int_a^b p(x)dx = 1$$
Normal Distribution

- The most used distribution
 \[P(x) = \frac{1}{\sqrt{(2\pi)^d \|\Sigma\|}} \exp \left(-\frac{1}{2} (x - \mu)^T \Sigma^{-1} (x - \mu) \right) \]

- Also called Gaussian distribution after C.F. Gauss who proposed it

- Justified by the Central Limit Theorem:
 - Roughly: “if a random variable is the sum of a large number of independent random variables it is approximately normally distributed”
 - Many observed variables are the sum of several random variables

- Shorthand:
 \[x \sim N(\mu, \Sigma) \]
Classic Continuous Distributions (II)

Uniform Distribution

- All data is equally probably within a bounded region \(R \), \(p(x) = 1/R \)
The expected value, mean or average of the random variable \(x \) is defined by:

\[
E[x] = \mu = \sum_{x \in \mathcal{X}} xP(x) = \sum_{i=1}^{m} v_i p_i.
\]

More generally, if \(f(x) \) is any function of \(x \), the expected value of \(f \) is defined by:

\[
E[f(x)] = \sum_{x \in \mathcal{X}} f(x)P(x).
\]

This is also called the center of mass.

Note that forming an expected values is linear, in that if \(\alpha_1 \) and \(\alpha_2 \) are arbitrary constants, then we have

\[
E[\alpha_1 f_1(x) + \alpha_2 f_2(x)] = \alpha_1 E[f_1(x)] + \alpha_2 E[f_2(x)].
\]
Expected Value

- **General rules of thumb:**

\[E[g(x)] \neq g(E[x]) \]
\[E[\alpha x] = \alpha E[x] \]
\[E[x + y] = E[x] + E[y] \]
\[E \left[\sum_i \alpha_i x_i \right] = \sum_i \alpha_i E[x_i] \]

- **In general:**

\[E[x \cdot y] \neq E[x] \cdot E[y] \]

- **Given a FINITE sample data, the Expectation is:**

\[E[x] = \frac{1}{N} \sum_{i=1}^{N} x_i \]
Variance and Standard Deviation

- **Variance**: \(Var[x] = \sigma^2 = E[(x - \mu)^2] = \sum_{x \in \mathcal{X}} (x - \mu)^2 P(x) \)

- \(\sigma \) is the *standard deviation* of \(x \). The variance is never negative and approaches 0 as the probability mass is centered at one point.

- The standard deviation is a simple measure of how far values of \(x \) are likely to depart from the mean.

 - i.e., the standard or typical amount one should expect a randomly drawn value of \(x \) to deviate or differ from \(\mu \).
Sample variance and covariance

- **Sample Variance**
 \[Var[x] = \frac{1}{N - 1} \sum_{i=1}^{N} (x_i - E[x])^2 \]
 - Why division by (N-1)? This is to obtain an unbiased estimate of the variance. (unbiased estimate: \(E[\hat{x}] = x \))

- **Covariance**
 \[Cov[x, y] = E \left[(x - E[x])(y - E[y]) \right] \]

- **Sample Covariance**
 \[Cov[x, y] = \frac{1}{N - 1} \sum_{i=1}^{N} (x_i - E[x])(y_i - E[y]) \]
 \[Cov[x] = \frac{1}{N - 1} \sum_{i=1}^{N} (x_i - E[x])(x_i - E[x])^T \]
Biased vs. Unbiased variance

- **Biased variance:**
 \[V = \frac{1}{n} \sum_{i=1}^{n} (x_i - X')^2 \]

- **“Anti-biased” variance:**
 \[V^* = \frac{1}{n} \sum_{i=1}^{n} (x_i - X_i')^2 \]

\[\Rightarrow (n - 1)^2 V^* = n^2 V \]

\[\Rightarrow \sqrt{V^*} \cdot V = \frac{1}{n-1} \sum_{i=1}^{n} (x_i - X')^2 \]
Sample variance

\[s^2 \text{ is sample variance, } \sigma^2 \text{ is true variance, } \mu \text{ is true mean} \]

\[
E[s^2] = E \left[\frac{1}{n-1} \sum_{i=1}^{n} (x_i - \bar{x})^2 \right] \quad \text{(where } \bar{x} = E[x] \text{ is the sample mean)}
\]

\[
= \frac{1}{n-1} \sum_{i=1}^{n} (x_i - \bar{x})^2
\]

\[
= \frac{1}{n-1} \sum_{i=1}^{n} ((x_i - \mu) - (\bar{x} - \mu))^2
\]

\[
= \frac{1}{n-1} \sum_{i=1}^{n} E [(x_i - \mu)^2] - 2E [(x_i - \mu) - (\bar{x} - \mu)] + E [(\bar{x} - \mu)^2]
\]

\[
= \frac{1}{n-1} \sum_{i=1}^{n} \left[\sigma^2 - 2 \left(\frac{1}{n} \sum_{j=1}^{n} E [(x_i - \mu)(x_j - \mu)] \right) + \frac{1}{n^2} \sum_{j=1}^{n} \sum_{k=1}^{n} E [(x_j - \mu)(x_k - \mu)] \right]
\]

\[
= \frac{1}{n-1} \sum_{i=1}^{n} \left[\sigma^2 - 2 \frac{\sigma^2}{n} + \frac{\sigma^2}{n} \right]
\]

\[
= \frac{1}{n-1} \sum_{i=1}^{n} \frac{(n-1)\sigma^2}{n}
\]

\[
= \frac{(n-1)\sigma^2}{n - 1}
\]

\[
= \sigma^2
\]
Conditional Probability

- \(P(x|y) \) is the probability of the occurrence of event \(x \) given that \(y \) occurred and is given as:

\[
P(x|y) = \frac{P(x \cap y)}{P(y)}
\]

- Knowing that \(y \) occurred reduces the sample space to \(y \), and the part of it where \(x \) also occurred is \((x,y)\).
Conditional Probability

- \(P(x|y) \) is the probability of the occurrence of event \(x \) given that \(y \) occurred and is given as:

\[
P(x|y) = \frac{P(x \cap y)}{P(y)}
\]

- Knowing that \(y \) occurred reduces the sample space to \(y \), and the part of it where \(x \) also occurred is \((x,y)\).

- This is only defined if \(P(y) > 0 \). Also, because \(\cap \) is commutative, we have:

\[
P(x \cap y) = P(x|y)P(y) = P(y|x)P(x)
\]
Statistical Independence

- If x and y are independent then we have
 \[P(x|y) = P(x) \]
- From there it follows that
 \[P(x \cap y) = P(x)P(y) \]
- In other words, knowing that y occurred does not change the probability that x occurs (and vice versa).
Bayes Rule

- **Remember:**
 \[P(x \cap y) = P(x|y)P(y) = P(y|x)P(x) \]

- **Bayes Rule:**
 \[P(y|x) = \frac{P(x|y)P(y)}{P(x)} \]

- **Interpretation**
 - \(P(y) \) is the **PRIOR** knowledge about \(y \)
 - \(X \) is new evidence to be incorporated to update my belief about \(y \).
 - \(P(x|y) \) is the **LIKELIHOOD** of \(x \) given that \(y \) was observed.
 - Both prior and likelihood can often be generated beforehand, e.g., by histogram statistics.
 - \(P(x) \) is a normalizing factor, corresponding to the *marginal distribution* of \(x \). Often it need not be evaluated explicitly, but it can become a great computational burden. “\(P(x) \) is an enumeration of all possible combinations of \(x \), and the probability of their occurrence.”
 - \(P(y|x) \) is the **POSTERIOR** probability of \(y \), i.e., the belief in \(y \) after one discovers \(x \).
Learning Bayesian Networks: Naïve and non-Naïve Bayes

• Hypothesis Space
 – fixed size
 – stochastic
 – continuous parameters

• Learning Algorithm
 – direct computation
 – eager
 – batch
Roles for Bayesian Methods

Provides practical learning algorithms:
- Naive Bayes learning
- Bayesian belief network learning
- Combine prior knowledge (prior probabilities) with observed data
- Requires prior probabilities

Provides useful conceptual framework
- Provides “gold standard” for evaluating other learning algorithms
Bayesian Learning

Bayes Theorem

- Consider hypothesis space H

$$P(h|D) = \frac{P(D|h)P(h)}{P(D)}$$

- $P(h) = \text{prior prob. of hypothesis } h \in H$
- $P(D) = \text{prior prob. of training data } D$
- $P(h|D) = \text{probability of } h \text{ given } D$
- $P(D|h) = \text{probability of } D \text{ given } h$
Choosing Hypotheses

Natural choice is most probable hypothesis given the training data, or *maximum a posteriori* hypothesis h_{MAP}:

$$h_{MAP} = \arg\max_{h \in H} P(h|D)$$

$$= \arg\max_{h \in H} \frac{P(D|h)P(h)}{P(D)}$$

$$= \arg\max_{h \in H} P(D|h)P(h)$$

If we assume $P(h_i) = P(h_j)$ then can further simplify, and choose the *maximum likelihood* (ML) hypothesis

$$h_{ML} = \arg\max_{h \in H} P(D|h)$$
Bayes Theorem: Example

Does patient have cancer or not?

- A patient takes a lab test and the result comes back positive. The test returns a correct positive result in 98% of the cases in which the disease is actually present, and a correct negative result in 97% of the cases in which the disease is not present. Furthermore, .008 of the entire population have this cancer.

\[
\begin{align*}
P (\text{cancer}) &= 0.008 \\
P (\neg \text{cancer}) &= 0.992 \\
P (+|\text{cancer}) &= 0.98 \\
P (+|\neg \text{cancer}) &= 0.03 \\
P (-|\text{cancer}) &= 0.02 \\
P (-|\neg \text{cancer}) &= 0.97
\end{align*}
\]
Bayes Theorem: Example

P (cancer) = 0.008 P (¬cancer) = 0.992
P (+|cancer) = 0.98 P (-|cancer) = 0.02
P (+|¬cancer) = 0.03 P (-|¬cancer) = 0.97

A positive test result comes in for a patient.
What is the h_{MAP}?

$$P(+|\text{cancer})P(\text{cancer}) = (0.98)(0.008) = 0.0078$$
$$P(+|\neg \text{cancer})P(\neg \text{cancer}) = (0.03)(0.992) = 0.0298$$

$h_{\text{MAP}} = \neg \text{cancer}$
Brute Force MAP Learner

1. For each hypothesis h in H, calculate the posterior probability

$$P(h|D) = \frac{P(D|h)P(h)}{P(D)}$$

2. Output the hypothesis h_{MAP} with the highest posterior probability

$$h_{\text{MAP}} = \arg\max_{h \in H} P(h|D)$$
Evolution of Posterior Probs

- As data is added, certainty of hypotheses increases.
Classifying New Instances

So far we've sought the most probable hypothesis given the data D (i.e., h_{MAP})

Given new instance \mathbf{x}, what is its most probable classification?

$h_{\text{MAP}}(\mathbf{x})$ is not the most probable classification!
Classification Example

Consider:

• Three possible hypotheses:
 \[P(h_1|D) = 0.4, \ P(h_2|D) = 0.3, \ P(h_3|D) = 0.3 \]

• Given new instance \(x \),
 \[h_1(x) = +, \ h_2(x) = -, \ h_3(x) = - \]

• What’s \(h_{\text{MAP}}(x) \) ?

• What's most probable classification of \(x \)?
Bayes Optimal Classifier

Bayes optimal classification:

\[
\arg\max_{v \in V} \sum_{h \in H} P(v|h) P(h|D)
\]

Example:

- \(P(h_1|D) = .4\), \(P(-|h_1) = 0\), \(P(+|h_2) = 1\)
- \(P(h_2|D) = .3\), \(P(-|h_2) = 1\), \(P(+|h_3) = 0\)
- \(P(h_3|D) = .3\), \(P(-|h_3) = 1\), \(P(+|h_3) = 0\),

therefore

\[
\sum_{h \in H} P(+|h) P(h|D) = 0.4
\]
\[
\sum_{h \in H} P(-|h) P(h|D) = 0.6
\]

MAP class
Gibbs Classifier

Bayes optimal classifier provides best result, but can be expensive if many hypotheses.

Gibbs algorithm:
1. Choose one hypothesis at random, according to \(P(h|D) \)
2. Use this one to classify new instance
Error of Gibbs

Noteworthy fact [Haussler 1994]: Assume target concepts are drawn at random from H according to priors on H. Then:

$$E[\text{error}_{\text{Gibbs}}] \leq 2E[\text{error}_{\text{BayesOptimal}}]$$

Suppose correctly, uniform prior distribution over H, then

• Pick any hypothesis consistent with the data, with uniform probability

• Its expected error no worse than twice Bayes optimal
Naive Bayes Classifier

Along with decision trees, neural networks, kNN, one of the most practical and most used learning methods.

When to use:
- Moderate or large training set available
- Attributes that describe instances are conditionally independent given classification

Successful applications:
- Diagnosis
- Classifying text documents
Naïve Bayes Assumption

- Suppose the features x_i are discrete
- Assume the x_i are conditionally independent given y.
- In other words, assume that:

 $$P(x_i|y) = P(x_i|y, x_j), \forall i, j$$

- Then we have:

 $$P(x_1, x_2, \cdots, x_n|y) = P(x_1|y)P(x_2|y)\cdots P(x_n|y)$$

- For binary features, instead of $O(2^n)$ numbers to describe a model, we only need $O(n)$!
Graphical Representation of Naïve Bayes Model

• Each node contains a probability table
 – y: $P(y = k)$
 – x_j: $P(x_j = v | y = k)$ “class conditional probability”

• Interpret as a generative model
 – Choose the class k according to $P(y = k)$
 – Generate each feature independently according to $P(x_j = v | y = k)$
 – The feature values are conditionally independent
 $P(x_i, x_j | y) = P(x_i | y) \cdot P(x_j | y)$
Naïve Bayes Algorithm

Naïve_Bayes_Learn(examples)

For each target value y_j

$P(\hat{y}_j) \leftarrow \text{estimate } P(y_j)$

For each attribute value x_i

$P(\hat{x}_i|y_j) \leftarrow \text{estimate } P(x_i|y_j)$

Classify_New_Instance(\mathbf{x})

$y_{NB} = \arg\max_{y_j \in Y} P(y_j) \prod_i P(x_i|y_j)$
Naïve Bayes: Example

- Consider the \emph{PlayTennis} problem and new instance \(<\text{Outlook} = \text{sun}, \text{Temp} = \text{cool}, \text{Humid} = \text{high}, \text{Wind} = \text{strong}>\)

Want to compute:

\[y_{\text{NB}} = \arg\max_{y_j \in Y} P(y_j) \prod_i P(x_i | y_j) \]

\[P(y) P(\text{sun} | y) P(\text{cool} | y) P(\text{high} | y) P(\text{strong} | y) = .005 \]

\[P(n) P(\text{sun} | n) P(\text{cool} | n) P(\text{high} | n) P(\text{strong} | n) = .021 \]

- So, \(y_{\text{NB}} = n \)
Naïve Bayes: Subtleties

• Conditional independence assumption is often violated

\[P(x_1, x_2 \ldots x_n, | y_j) = \prod_i P(x_i | y_j) \]

• ...but it works surprisingly well anyway. Note don't need estimated posteriors \(P(y_j|x) \) to be correct; need only that

\[\arg\max_{y_j \in Y} P(y_j|x) = \arg\max_{y_j \in Y} P(y_j) \prod_i P(x_i | y_j) \]

• See Domingos & Pazzani [1996] for analysis

• Naïve Bayes posteriors often unrealistically close to 1 or 0
Decision Boundary of naïve Bayes with binary features

• The parameters of the model are \(\theta_{i,1} = P(x_i = 1|y=1), \theta_{i,0} = P(x_i = 1|y=0), \theta_1 = P(y=1) \)

• What is the decision surface?

\[
\frac{P(y = 1|x)}{P(y = 0|x)} = \frac{P(y = 1) \prod_{i=1}^{n} P(x_i|y = 1)}{P(y = 0) \prod_{i=1}^{n} P(x_i|y = 0)}
\]

• Using the log trick, we get:

\[
\log \frac{P(y = 1|x)}{P(y = 0|x)} = \log \frac{P(y = 1)}{P(y = 0)} + \sum_{i=1}^{n} \log \frac{P(x_i|y = 1)}{P(x_i|y = 0)}
\]

• Note that in the equation above, the \(x_i \) would be 1 or 0, depending on the values were present in the instance.
Decision Boundary of naïve Bayes with binary features

\begin{align*}
\text{let:} \quad w_0 &= \log \frac{P(y = 1)}{P(y = 0)} \\
w_{i,1} &= \log \frac{P(x_i = 1 | y = 1)}{P(x_i = 1 | y = 0)} \\
&\quad \quad \quad \quad \frac{P(x_i = 0 | y = 0)}{P(x_i = 0 | y = 0)} \\
\end{align*}

- We can re-write the decision boundary as:

\begin{align*}
\log \frac{P(y = 1 | x)}{P(y = 0 | x)} &= w_0 + \sum_{i=0}^{n} (w_{i,1}x_i + w_{i,0}(1 - x_i)) \\
&= w_0 + \sum_{i=1}^{n} w_{i,0} + \sum_{i=1}^{n} (w_{i,1} - w_{i,0})x_i
\end{align*}

- This is a \textit{linear decision boundary}!
Representing $P(x_j | y)$

Many representations are possible

– Univariate Gaussian
 • if x_j is a continuous random variable, then we can use a normal distribution and learn the mean μ and variance σ^2

– Multinomial/Binomial
 • if x_j is a discrete random variable, $x_j \in \{v_1, ..., v_m\}$, then we construct a conditional probability table

– Discretization
 • convert continuous x_j into a discrete variable

– Kernel Density Estimates
 • apply a kind of nearest-neighbor algorithm to compute $P(x_j | y)$ in neighborhood of query point
Representing $P(x_j | y)$ – Discrete Values

- Multinomial/Binomial

 • if x_j is a discrete random variable, $x_j \in \{v_1, ..., v_m\}$, then we construct the conditional probability table

<table>
<thead>
<tr>
<th></th>
<th>$y = 1$</th>
<th>$y = 2$</th>
<th>...</th>
<th>$y = K$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$x_j = v_1$</td>
<td>$P(x_j = v_1</td>
<td>y = 1)$</td>
<td>$P(x_j = v_1</td>
<td>y = 2)$</td>
</tr>
<tr>
<td>$x_j = v_2$</td>
<td>$P(x_j = v_2</td>
<td>y = 1)$</td>
<td>$P(x_j = v_2</td>
<td>y = 2)$</td>
</tr>
<tr>
<td>$x_j = v_m$</td>
<td>$P(x_j = v_m</td>
<td>y = 1)$</td>
<td>$P(x_j = v_m</td>
<td>y = 2)$</td>
</tr>
</tbody>
</table>

$$P(x_j = v_l | y = k) = \frac{\text{number of instances for which } x_j = v_l \text{ and } y = k}{\text{number of instances for which } y = k}$$
Many discretization algorithms have been studied. One of the best is based on mutual information [Fayyad & Irani 93].

- To discretize feature x_j, grow a decision tree considering only splits on x_j. Each leaf of the resulting tree will correspond to a single value of the discretized x_j.

![Diagram of discretization via mutual information](image-url)
Discretization via Mutual Information

- Many discretization algorithms have been studied. One of the best is based on mutual information [Fayyad & Irani 93].
 - To discretize feature x_j, grow a decision tree considering only splits on x_j. Each leaf of the resulting tree will correspond to a single value of the discretized x_j.
 - Stopping rule (applied at each node). Stop when

$$I(x_j; y) < \frac{\log_2(N - 1)}{N} + \frac{\Delta}{N}$$

$$\Delta = \log_2(3^K - 2) - [K \cdot H(S) - K_l \cdot H(S_l) - K_r \cdot H(S_r)]$$

- where S is the training data in the parent node; S_l and S_r are the examples in the left and right child. K, K_l, and K_r are the corresponding number of classes present in these examples. I is the mutual information, H is the entropy, and N is the number of examples in the node.
Many discretization algorithms have been studied. One of the best is based on mutual information [Fayyad & Irani 93].

- An alternative encoding [Macskassy et al. 02] is similar to thermometer coding as used in neural networks [Gallant 93].
- Rather than encode continuous values into one value, encode into \(2^v\) values, where \(v\) is the number of split points created.
- Each encoded binary value represents whether the continuous value was greater or less-than-or-equal to one of the split points.

Encoding: \{\text{>split1,} \leq \text{split1,} \text{>split2,} \leq \text{split2,} \text{>split3,} \leq \text{split3,} \text{>split4,} \leq \text{split4}\}

\[p: \{1, 0, 0, 1, 0, 1, 0, 0, 1\} \]
Kernel Density Estimators

- Define \(K(x_j, x_{i,j}) = \frac{1}{\sqrt{2\pi\sigma}} \exp\left(-\left(\frac{x_j - x_{i,j}}{\sigma}\right)^2\right) \) to be the Gaussian Kernel with parameter \(\sigma \).

- Estimate

\[
P(x_j | y = k) = \frac{\sum\{i | y = k\} K(x_j, x_{i,j})}{N_k}
\]

where \(N_k \) is the number of training examples in class \(k \).
Kernel Density Estimators (2)

- This is equivalent to placing a Gaussian “bump” of height $1/N_k$ on each training data point from class k and then adding them up.
Kernel Density Estimators (3)

- Resulting probability density
The value chosen for σ is critical

$\sigma=0.15$???

$\sigma=0.50$
Learning the Probability Distributions by Direct Computation

- \(P(y=k) \) is just the fraction of training examples belonging to class \(k \).
- For multinomial variables, \(P(x_j = v \mid y = k) \) is the fraction of training examples in class \(k \) where \(x_j = v \).
- For Gaussian variables, \(\hat{\mu}_{jk} \) is the average value of \(x_j \) for training examples in class \(k \). \(\hat{\sigma}_{jk} \) is the sample standard deviation of those points:

\[
\hat{\sigma}_{jk} = \sqrt{\frac{1}{N_k} \sum_{i \mid y_i = k} (x_{i,j} - \hat{\mu}_{jk})^2}
\]
Improved Probability Estimates via Laplace Corrections

- When we have very little training data, direct probability computation can give probabilities of 0 or 1. Such extreme probabilities are “too strong” and cause problems.
- Suppose we are estimating a probability $P(z)$ and we have n_0 examples where z is false and n_1 examples where z is true. Our direct estimate is:

$$P(z = 1) = \frac{n_1}{n_0 + n_1}$$

- Laplace Estimate. Add 1 to the numerator and 2 to the denominator:

$$P(z = 1) = \frac{n_1 + 1}{n_0 + n_1 + 2}$$

This says that in the absence of any evidence, we expect $P(z) = 0.5$, but our belief is weak (equivalent to 1 example for each outcome).
- Generalized Laplace Estimate. If z has K different outcomes, then we estimate it as:

$$P(z = 1) = \frac{n_1 + 1}{n_0 + \cdots + n_{K-1} + K}$$
Naïve Bayes Applied to Diabetes Diagnosis

- Bayes nets and causality
 - Bayes nets work best when arrows follow the direction of causality
 - two things with a common cause are likely to be conditionally independent given the cause; arrows in the causal direction capture this independence
 - In a Naïve Bayes network, arrows are often not in the causal direction
 - diabetes does not cause pregnancies
 - diabetes does not cause age
 - But some arrows are correct
 - diabetes does cause the level of blood insulin and blood glucose
Non-Naïve Bayes

- Manually construct a graph in which all arcs are causal
- Learning the probability tables is still easy. For example, \(P(\text{Mass} \mid \text{Age, Preg}) \) involves counting the number of patients of a given age and number of pregnancies that have a given body mass
- Classification:

\[
P(D = d \mid A, P, M, I, G) = \frac{P(I \mid D = d) P(G \mid I, D = d) P(D = d \mid A, M, P)}{P(I, G)}
\]
Bayesian Belief Network

Network represents a set of conditional ind. assertions:

- Each node is asserted to be conditionally ind. of its non-descendants, given its immediate predecessors.
- Directed acyclic graph
Bayesian Belief Network

Represents joint probability distribution over all variables

- e.g., \(P(\text{Storm}, \text{BusTourGroup}, \ldots, \text{ForestFire}) \)
- in general, \(P(y_1, \ldots, y_n) = \prod_{i=1}^{n} P(y_i | \text{Parents}(Y_i)) \) where \(\text{Parents}(Y_i) \) denotes immediate predecessors of \(Y_i \) in the graph
- Therefore, the joint distribution is fully defined by graph, plus the CPTS: \(P(y_i | \text{Parents}(Y_i)) \)
Inference in Bayesian Nets

How can one infer the (probabilities of) values of one or more network variables, given observed values of others?

• Bayes net contains all information needed for this inference
• If only one variable with unknown value, easy to infer it
• Easy if BN is a “polytree”
• In general case, problem is NP hard (#P-complete, Roth 1996).
In practice, can succeed in many cases

- Exact inference methods work well for some network structures (small “induced width”)
- Monte Carlo methods “simulate” the network randomly to calculate approximate solutions
- Now used as a primitive in more advanced learning and reasoning scenarios. (e.g., in relational learning)
Learning Bayes Nets

Suppose structure known, variables partially observable

e.g., observe *ForestFire, Storm, BusTourGroup, Thunder*, but not *Lightning, Campfire*...

Similar to training neural network with hidden units

• In fact, can learn network conditional probability tables using gradient ascent!

• Converge to network \(h \) that (locally) maximizes \(P(D|h) \)
Gradient Ascent for BNs

Let w_{ijk} denote one entry in the conditional probability table for variable Y_i in the network

$$w_{ijk} = P(Y_i = y_{ij} | \text{Parents}(Y_i) = u_{jk} \text{ values})$$

e.g., if $Y_i = \text{Campfire}$, then u_{ik} might be

$$<\text{Storm} = T, \text{BusTourGroup} = F>$$

Perform gradient ascent by repeatedly:

1. Update all w_{ijk} using training data D

$$w_{ijk} \leftarrow w_{ijk} + \eta \frac{\sum_{d \in D} P_h(y_{ij}, u_{jk} | d)}{w_{ijk}}$$

2. Then, renormalize the w_{ijk} to assure

$$\sum_j w_{ijk} = 1, \ 0 \leq w_{ijk} \leq 1$$
Unknown Structure

When structure unknown...

- Algorithms use greedy search to add/subtract edges and nodes
- Active research topic

Somewhat like decision trees: searching for a discrete graph structure
Belief Networks

- Combine prior knowledge with observed data
- Impact of prior knowledge (when correct!) is to lower the sample complexity
- Active research area (UAI)
 - Extend from Boolean to real-valued variables
 - Parameterized distributions instead of tables
 - Extend to first-order systems
 - More effective inference methods
 - ...
Naïve Bayes Summary

- **Advantages of Bayesian networks**
 - Produces stochastic classifiers
 - can be combined with utility functions to make optimal decisions
 - Easy to incorporate causal knowledge
 - resulting probabilities are easy to interpret
 - Very simple learning algorithms
 - if all variables are observed in training data

- **Disadvantages of Bayesian networks**
 - Fixed sized hypothesis space
 - may underfit or overfit the data
 - may not contain any good classifiers if prior knowledge is wrong
 - Harder to handle continuous features
Evaluation of Naïve Bayes

<table>
<thead>
<tr>
<th>Criterion</th>
<th>LMS</th>
<th>Logistic</th>
<th>LDA</th>
<th>Trees</th>
<th>NNbr</th>
<th>Nets</th>
<th>NB</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mixed data</td>
<td>no</td>
<td>no</td>
<td>no</td>
<td>yes</td>
<td>no</td>
<td>no</td>
<td>yes</td>
</tr>
<tr>
<td>Missing values</td>
<td>no</td>
<td>no</td>
<td>yes</td>
<td>yes</td>
<td>some</td>
<td>no</td>
<td>yes</td>
</tr>
<tr>
<td>Outliers</td>
<td>no</td>
<td>yes</td>
<td>no</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>disc</td>
</tr>
<tr>
<td>Monotone transformations</td>
<td>no</td>
<td>no</td>
<td>no</td>
<td>yes</td>
<td>no</td>
<td>some</td>
<td>disc</td>
</tr>
<tr>
<td>Scalability</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>no</td>
<td>yes</td>
<td>yes</td>
</tr>
<tr>
<td>Irrelevant inputs</td>
<td>no</td>
<td>no</td>
<td>no</td>
<td>some</td>
<td>no</td>
<td>no</td>
<td>some</td>
</tr>
<tr>
<td>Linear combinations</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>no</td>
<td>some</td>
<td>yes</td>
<td>yes</td>
</tr>
<tr>
<td>Interpretable</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>no</td>
<td>no</td>
<td>yes</td>
</tr>
<tr>
<td>Accurate</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>no</td>
<td>no</td>
<td>yes</td>
<td>yes</td>
</tr>
</tbody>
</table>

- Naïve Bayes is very popular, particularly in natural language processing and information retrieval where there are many features compared to the number of examples.
- In applications with lots of data, Naïve Bayes does not usually perform as well as more sophisticated methods.