REPEATED ACTIVE SCREENING OF NETWORKS FOR DISEASES

Biswaup Bhattacharya, Han Ching Ou, Arunesh Sinha *, Sze-Chuan Suen, Bistra Dilkina & Milind Tambe

University of Southern California, * University of Michigan

epiDAMIK Workshop @ KDD 2018
AI FOR SOCIAL GOOD
Number of health problems – AI can be utilized

HIV, infectious diseases, nutrition, among others

Curable infectious diseases
- Tuberculosis - 10M+ people affected in 2016 [WHO]

Minimizing the number of infected individuals
INTRODUCTION – ACTIVE SCREENING

- Individuals may not be able to seek treatment themselves
 - Distance from clinic, failure to self diagnose etc.
- Often – a matter of outreach and identification
 - Resource constraints – e.g. 1 health worker / 500 people (India)

- Problem of Active Screening
 - *Definition*: Individuals *sought out* by health workers and treated

- Passive Screening: Individuals seek treatment voluntarily
INTRODUCTION – ACTIVE SCREENING

- Which nodes to act on first?
- Which nodes to act on next?
ACTS Problem

Given –
- A known network of individuals \((n)\)
- Infectious disease parameters
- Limited resources \((k)\)

Find – An active screening policy

To maximize – Number of healthy individuals over time
Previous works generally do not consider:

- Multiple timesteps
- Uncertainty in health states
- Latent stages
- Lack of permanent immunity

As discussed: Hard to predict infected nodes
In the field: Heuristics used – degree, high-risk societies
CONTRIBUTIONS

1. ACTS Active Screening Model
 - POMDP-like model

2. TRACE Algorithm for ACTS
 - Synergy of 3 Key Ideas: Greedy, eigenvalue & community
 - Practically significant results of increase in healthy population
OVERVIEW

1. Problem Modeling
 - SEIS Disease Model
 - Active Screening Model

2. TRACE Algorithm
 - Belief States & Attractiveness Score (FIRST KEY IDEA)
 - Dynamic Eigenvalue (SECOND KEY IDEA)
 - Community Formation (THIRD KEY IDEA)

3. Experiments
1. Problem Modeling
 - SEIS Disease Model
 - Active Screening Model
2. TRACE Algorithm
3. Experiments
SEIS COMPARTMENTAL DISEASE MODEL

- 3 states – S (healthy), E (exposed, cannot infect others), I (infected)
- Note: c is the probability individuals voluntarily screen themselves
- Latent stage (E) + Lack of permanent immunity

\[
\begin{align*}
\text{Susceptible (S)} & \xrightarrow{\alpha} \text{Exposed (E)} \\
\text{Exposed (E)} & \xrightarrow{\beta} \text{Infected (I)} \\
\text{Infected (I)} & \xrightarrow{c} \text{Susceptible (S)}
\end{align*}
\]
ACTIVE SCREENING MODEL – [S], [A], T, O, Z, R

- n individuals $\leftrightarrow n$ nodes
- Each node’s state – S, E or I
- States not readily known by us (agents)
- Action: Screen (1) or not screen (0)
 - $k (< n)$ individuals to be screened at each stage
ACTIVE SCREENING MODEL – S, A, [T], O, Z, R

- Cyclic and unidirectional: $S \rightarrow E \rightarrow I$

- From Row state to Column state

- $q(j)$: Number of infected neighbors of node j

$T^0 = \begin{bmatrix} S & E & I \\ S & q_j & 1-q_j & 0 \\ E & 0 & 1-\beta & \beta \\ I & c & 0 & 1-c \end{bmatrix}$, $T^1 = \begin{bmatrix} S & E & I \\ S & q_j & 1-q_j & 0 \\ E & 1 & 0 & 0 \\ I & 1 & 0 & 0 \end{bmatrix}$
ACTIVE SCREENING MODEL – S, A, [T], O, Z, R

Higher probability

Lower probability
- Actual health state observed on screening (a=1)
- Else, no observation
ACTIVE SCREENING MODEL – S, A, T, O, Z, [R]

- +1 for every healthy (S) individual
- In shown network, R = +6
- Objective: Maximize increase in number of disease-free half-years over no intervention

\[\sum_{t=0}^{t=T} |S|_t \]
WHY NOT POMDP? – SCALABILITY

Figure: Runtime (s) v/s n
OVERVIEW

1. Problem Modeling

2. TRACE Algorithm
 - Belief States & Attractiveness Score (FIRST KEY IDEA)
 - Dynamic Eigenvalue (SECOND KEY IDEA)
 - Community Formation (THIRD KEY IDEA)

3. Experiments
TRACE ALGORITHM

- Generates an online POMDP policy
- Synergy of three approaches:
 1. Community [Hendrickson and Leland, 1995]
 2. Beliefs (Greedy)
 3. Eigenvalues [Prakash et al., 2012]
HOW TO HANDLE UNKNOWN STATES?

- Maintain beliefs

\[b_i^t = [b_{i,S}^t, b_{i,E}^t, b_{i,I}^t] \]

- Maintaining marginals good enough [Chakrabarti et al., 2008]

- Other representations – prohibitively large

- Belief update rules – similar to T matrices
HOW TO HANDLE UNKNOWN STATES?

- Maintain beliefs for EVERY node $\rightarrow O(3 \times n)$ space
 \[b_i^t = [b_{i,S}^t, b_{i,E}^t, b_{i,I}^t] \]
- Maintaining marginals good enough [Chakrabarti et al., 2008]
- Other representations – prohibitively large
BELIEF STATES UPDATE

\[b^t_i = [b^t_{i,S}, b^t_{i,E}, b^t_{i,I}] \]

- Belief update rules \((b^t_i \rightarrow b^{t+1}_i)\) – similar to T matrices
- Start with \([0.33, 0.33, 0.33]\) belief for all
- Belief set to actual state for nodes screened in current timestep
 - E.g. Change to \([1,0,0]\) on screening S node, \([0,1,0]\) if E, \([0,0,1]\) if I
- Update normally if not screened in current timestep
BELIEF STATES – EXAMPLE UPDATE (T=0 → T=1)

If nodes with **light arrows** are screened (initially all beliefs are \([0.33, 0.33, 0.33]\))

\[
\begin{align*}
b_{11}^{t+1} & = [0.4, 0.3, 0.2] \\
b_{2}^{t+1} & = [0.3, 0.4, 0.3] \\
b_{4}^{t+1} & = [1, 0, 0] \\
b_{9}^{t+1} & = [0, 1, 0]
\end{align*}
\]
FIRST KEY IDEA

GREEDY

- Attractiveness score for every node based on beliefs
 \[R_i^t = \sigma b_{i,E}^t + b_{i,I}^t \]
- Simply screen based on higher score
- Possibly not optimal
GREEDY SELECTION

\[\sigma = 0.5 \]

\[R_i^t = \sigma b_{i,E}^t + b_{i,i}^t \]

[0, 1, 0]
[0.2, 0.44, 0.36]
[0, 0, 1]

[0.4, 0.3, 0.3]
[0.6, 0.3, 0.1]

[0, 1, 0]
[0.45]
[0.25]

[0, 0, 1]
[0.5]
[0.58]
[1]
An epidemic dies out iff
\[
\frac{\alpha}{c} < \frac{1}{\lambda_A^*} \quad \text{and} \quad \beta \neq 0.
\]
[Prakash et al., 2012]

- \(\lambda_A^* = \) largest eigenvalue of the adjacency matrix \(A \) of a graph
- High \(\alpha \) and/or low \(c \) make the limit harder to achieve
SECOND KEY IDEA – DYNAMIC EIGEN

\[\frac{\alpha}{c} < \frac{1}{\lambda^*_A} \text{ and } \beta \neq 0. \]

- “Remove” nodes such that \(\lambda^*_A \) decreases \(\rightarrow \) increases \(1/\lambda^*_A \)
- S nodes cannot infect neighbors \(\rightarrow \) remove S nodes
- Our case: multiply each row by \((1 - b^t_{i,S}) \)
- Iteratively remove + check \(\rightarrow \) slow for large n
THIRD KEY IDEA – SPEEDING UP DYNAMIC EIGEN

COMMUNITIES

- Group nodes by attractiveness scores
- *Coarsening* [Hendrickson & Leland, 1995]
- Number of groups \(\leq n \) \(\rightarrow \) DynamicEigen scales up
- Can be proven for scale-free graphs:

\[
\text{number of groups} = O\left(\frac{1.5}{d} n\right) \quad (d = \text{average degree})
\]
COMMUNITIES – GRAPH COARSENING
TRACE ALGORITHM – THREE STEPS

1. Greedy approach: Belief information [Unknown health states]
2. Community-based approach: Grouping nodes [Speeds up next step]
3. Eigenvalue-based approach: Reducing spectral radius [Optimality]

None superior by itself! (7 observations in extended version)
OVERVIEW

1. Problem Modeling
2. TRACE Algorithm
3. Experiments
10 real-world networks in extended version (n = 75 to 16730)

3 in epiDAMIK submission (n = 202 to 1899)
1. India (n = 202, [Banerjee et al., 2013]): Collected from a rural Indian village
2. Infectious Exhibition (n = 410, [Isella et al., 2011])
3. Irvine (n = 1899, [Opsahl & Panzarasa, 2009])
SETUP

- $\alpha = 0.1 - 0.3$, $\beta = 0.25$, $c = 0.2 - 0.6$
- Each round = 6 months
- Total simulation = 10 years
- $k = 5\%$, $\sigma = 0.5$
- Metric: Increase in number of disease-free half-years over no intervention

$$\sum_t |S|_{t,\text{algo}} - \sum_t |S|_{t,\text{none}}$$
RESULTS – VARYING PARAMETERS

- MB: Greedy
- DE: Just DynamicEigen without community
- Comm: 0-1 knapsack select without eigen

(c) Varying α ($c = 0.2$)

(d) Varying c ($\alpha = 0.2$)

Figure: Performance by TRACE components (India network)
RESULTS – OVER TIME

(a) India network

(b) Exhibition network

Increase in \(\sum_{t=0}^{T} |S|_t \) over None for varying \(T \)

\((\alpha = 0.1, \beta = 0.25, c = 0.2) \)
KEY TAKEAWAYS

✓ **Hard problem** – Multi-round + SEIS + unknown health states

✓ **Belief states** to estimate the uncertain health status

✓ ↓ **spectral radius** ⇒ ↓ disease prevalence

✓ **Three approaches**: Eigenvalue, community, greedy

✓ **TRACE** → **practically significant** results
FUTURE WORK

- Addressing TB in India

- Future: Complex disease models, birth and death, costs, network uncertainty
THANKYOU!

“TRACE: Algorithmic ACTS for Preventing the Spread of Recurrent Infectious Diseases on Networks”

bbhattac@usc.edu

https://biswarupb.github.io/